Coherent Attosecond Ionization Dynamics in Laser-Dressed Atomic and Molecular Systems

激光修饰原子和分子系统中的相干阿秒电离动力学

基本信息

项目摘要

Many chemical transformations, such as combustion, photosynthesis, and radiational damage, are driven by the motion of electric charge. Observing and steering the motion of charge at the molecular level so to efficiently harness energy, transfer information, and control chemical reactions, however, is complicated by the extremely short timescale at which electrons move. An electron can travel across tens of atoms in less than a millionth of a billionth of a second (one femtosecond, fs). This motion can only be affected by using probes that operate at a similar speed. Such a probe, an extreme ultraviolet light pulse with sub-femtosecond duration, was reported for the first time only at the turn of this century. In the two decades elapsed since, attosecond (1 as = 0.001 fs) laser and detection technology has advanced to a level that allows us to follow and to partially alter the natural course of transformations triggered by ionizing light. Many aspects of ultrafast transformations, however, are still unknown. In this project, the PI and his group will theoretically study the statistical properties and the time evolution of localized charges created in organic molecules by the absorption of short pulses of ionizing radiation using novel numerical techniques complementary to those employed by other groups. In particular, the PI's group will explore how infrared pulses, such as those used in pulsed-laser surgery, can be used to increase the purity of the quantum states produced. The project will serve the national interest through the advancement of ultrafast science, through the development of researchers at the undergraduate, graduate, and post-graduate level, through synergistic collaborations with US research groups, and through outreach programs that include research internships of high-school students as well as hands-on workshops on molecular structure at local minority-serving high schools. The PI's group has developed wave-function-based ab initio correlated methods for the time-resolved study of multiphoton ionization of polyelectronic atoms and, more recently, of small molecules. This project tackles three open challenges: the stabilization, conversion, and fragmentation control of autoionizing polaritons in atomic and molecular systems; the creation, propagation, and monitoring of localized electron holes in molecular photoions; and the calculation of the photoelectron distribution from the ionization of laser-dressed helium atoms by free-electron-laser pulses, mediated by autoionizing states. The project has multiple methodological components: the implementation of a non-Hermitian Floquet solver in a basis of Siegert states, to determine the complex energy surfaces of autoionizing polaritons and to identify exceptional points for topologically robust conversions; the calculation, within a wave-function based approach, of the ensemble of molecular ions emerging from a photoionization event, to characterize hole localization; and the segmentation of the wavefunction, to reconstruct the photoelectron distribution from the ionization of laser-dressed helium atoms by long XUV FEL pulses. On the phenomenological side, these advancements will allow the group to identify and characterize exceptional points between autoionizing states in laser dressed atoms and molecules, thus extending coherent control above the ionization threshold to include topologically robust conversion protocols; to characterize hole localization and state purity in the ions generated in the photoionization of small molecules, their subsequent correlated dynamics and the optical and photoelectron observables able to probe such dynamics; and to explain coincidence measurements in the ionization of laser-dressed helium by FEL pulses.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多化学转化,例如燃烧、光合作用和辐射损伤,都是由电荷运动驱动的。然而,在分子水平上观察和控制电荷的运动,以有效地利用能量、传输信息和控制化学反应,由于电子运动的时间尺度极短,变得很复杂。一个电子可以在不到十亿分之一秒(飞秒,fs)的时间内穿过数十个原子。这种运动只能通过使用以相似速度运行的探头来影响。这种探测器是一种亚飞秒持续时间的极紫外光脉冲,直到本世纪之交才首次被报道。在此后的二十年里,阿秒(1 as = 0.001 fs)激光和探测技术已经发展到了一定水平,使我们能够跟踪并部分改变电离光触发的自然转变过程。然而,超快转变的许多方面仍然未知。在这个项目中,首席研究员和他的团队将从理论上研究有机分子通过吸收电离辐射短脉冲而产生的局部电荷的统计特性和时间演化,使用与其他团队所使用的技术互补的新型数值技术。特别是,PI 的团队将探索如何使用红外脉冲(例如脉冲激光手术中使用的红外脉冲)来提高所产生的量子态的纯度。该项目将通过超快科学的进步,通过本科生、研究生和研究生水平的研究人员的发展,通过与美国研究小组的协同合作,以及通过包括高水平研究实习在内的外展计划来服务于国家利益。学生以及当地少数族裔高中的分子结构实践研讨会。 PI 的小组开发了基于波函数的从头算相关方法,用于多电子原子以及最近的小分子的多光子电离的时间分辨研究。该项目解决了三个开放性挑战:原子和分子系统中自电离极化子的稳定、转换和碎片控制;分子光电子中局部电子空穴的产生、传播和监测;以及通过自电离态介导的自由电子激光脉冲电离激光修饰的氦原子来计算光电子分布。该项目有多个方法组成部分:在 Siegert 态的基础上实施非厄米特 Floquet 求解器,以确定自电离极化子的复杂能量表面并识别拓扑鲁棒转换的异常点;在基于波函数的方法中计算光电离事件中出现的分子离子的集合,以表征空穴定位;以及波函数的分割,以通过长 XUV FEL 脉冲重建激光修饰的氦原子电离的光电子分布。在现象学方面,这些进步将使该小组能够识别和表征激光修饰的原子和分子中自电离态之间的异常点,从而将相干控制扩展到电离阈值之上,以包括拓扑鲁棒的转换协议;表征小分子光电离产生的离子中的空穴定位和状态纯度、其随后的相关动力学以及能够探测此类动力学的光学和光电子可观测值;该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Luca Argenti其他文献

常磁性カイラル系における電流誘起磁性の観測
顺磁手性系统中电流感应磁性的观察
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nariyuki Saito;Nicolas Douguet;Hiroki Sannohe;Nobuhisa Ishii;Teruto Kanai;Yi Wu;Andrew Chew;Seunghwoi Han;Barry I. Schneider;Jeppe Olsen;Luca Argenti;Zenghu Chang;and Jiro Itatani;伊藤哲明
  • 通讯作者:
    伊藤哲明

Luca Argenti的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Luca Argenti', 18)}}的其他基金

Attosecond Photoemission Dynamics: Novel AB Initio Methods for Atomic and Molecular Ex-situ Spectrscopies
阿秒光电子发射动力学:原子和分子异位光谱的新型 AB 从头算方法
  • 批准号:
    1912507
  • 财政年份:
    2019
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Theoretical Atomic Attosecond Spectroscopy: Monitor and Control of Electron Correlation in Real Time
理论原子阿秒能谱:电子相关性的实时监测和控制
  • 批准号:
    1607588
  • 财政年份:
    2016
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant

相似海外基金

Visualization of atomic and molecule excitation/ionization processes with ultra-short (attosecond) and optical gated (femtosecond) laser pulses and study of high harmonic generation (HHG) in a filament
使用超短(阿秒)和光门控(飞秒)激光脉冲可视化原子和分子激发/电离过程,并研究灯丝中的高次谐波产生 (HHG)
  • 批准号:
    RGPIN-2017-06181
  • 财政年份:
    2021
  • 资助金额:
    $ 36万
  • 项目类别:
    Discovery Grants Program - Individual
Visualization of atomic and molecule excitation/ionization processes with ultra-short (attosecond) and optical gated (femtosecond) laser pulses and study of high harmonic generation (HHG) in a filament
使用超短(阿秒)和光门控(飞秒)激光脉冲可视化原子和分子激发/电离过程,并研究灯丝中的高次谐波产生 (HHG)
  • 批准号:
    RGPIN-2017-06181
  • 财政年份:
    2020
  • 资助金额:
    $ 36万
  • 项目类别:
    Discovery Grants Program - Individual
Visualization of atomic and molecule excitation/ionization processes with ultra-short (attosecond) and optical gated (femtosecond) laser pulses and study of high harmonic generation (HHG) in a filament
使用超短(阿秒)和光门控(飞秒)激光脉冲可视化原子和分子激发/电离过程,并研究灯丝中的高次谐波产生 (HHG)
  • 批准号:
    RGPIN-2017-06181
  • 财政年份:
    2019
  • 资助金额:
    $ 36万
  • 项目类别:
    Discovery Grants Program - Individual
Visualization of atomic and molecule excitation/ionization processes with ultra-short (attosecond) and optical gated (femtosecond) laser pulses and study of high harmonic generation (HHG) in a filament
使用超短(阿秒)和光门控(飞秒)激光脉冲可视化原子和分子激发/电离过程,并研究灯丝中的高次谐波产生 (HHG)
  • 批准号:
    RGPIN-2017-06181
  • 财政年份:
    2018
  • 资助金额:
    $ 36万
  • 项目类别:
    Discovery Grants Program - Individual
Study of thermalization and relaxation process after ionization using attosecond pulse radiolysis
阿秒脉冲辐解电离后的热化和弛豫过程研究
  • 批准号:
    17H01374
  • 财政年份:
    2017
  • 资助金额:
    $ 36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了