Collaborative Research: Molecular and Nanoscale Structure and Interactions of PFAS at Interfaces and Mixed Surfactant Systems
合作研究:PFAS 的分子和纳米结构以及界面和混合表面活性剂体系的相互作用
基本信息
- 批准号:2227128
- 负责人:
- 金额:$ 30.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-15 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Per- and polyfluoroalkyl substances (PFAS), also known as “Forever Chemicals,” find a wide variety of applications because of their high chemical and thermal stability and their unique abilities to render solid surfaces non-stick, stabilize foams for firefighting, and be immiscible with both water and hydrocarbons. Released into the environment, PFAS bioaccumulate, resist degradation, and can cause adverse health effects. These factors drive initiatives to reduce future releases of PFAS and to sequester PFAS released in the past. With a goal of developing knowledge that supports improved water quality and the design of functional materials with tailored properties, this project will investigate PFAS surfactants in aqueous solutions and at water-air, water-oil, and water-solid interfaces. The project will develop fundamental knowledge on PFAS properties that can positively impact the environment (use of fluorinated surfactants more efficiently and in smaller amounts, remediation of fluorinated surfactants), health (how fluorocarbon surfactants interact with hydrocarbon surfactants and (bio)polymers), and technology (rational design of new materials and methods for sequestering PFAS, and computational evaluation of new chemical designs for potential replacements of PFAS in products). The coupling of the materials-by-design research with environmental, health, and societal impacts will be integrated into concerted efforts toward outreach and education of scientists and engineers through the engagement of undergraduate students in research and the development of new course materials.Per- and polyfluoroalkyl substances (PFAS) include fluorinated surfactants which find a wide variety of applications because of their high chemical and thermal stability and their unique ability to modify surfaces. PFAS surfactants can be extremely resistant to degradation in the environment, can bioaccumulate, and may cause adverse health effects. This project is a concerted computational and experimental effort that addresses molecular, nano-scale organization of PFAS in bulk water and at interfaces. The research is organized into three topics of study: (1) Competitive molecular interactions and self-assembly of PFAS with other molecules present in aqueous solution: mixtures of different PFAS, and mixtures of PFAS and hydrocarbon surfactants. (2) Organization and interactions between PFAS and hydrocarbon surfactants at the water-air and water-oil interfaces. Such fundamental understanding of PFAS behavior at interfaces is crucial to advance their replacement in key applications such as aqueous film-forming foams (AFFF), and to optimize PFAS sequestration methods such as foam fractionation and aeration. (3) PFAS interactions and binding to model solid surfaces that pertain to the fate of PFAS in the environment and the replacement of PFAS that are used to render surfaces non-stick. The project will generate new knowledge on interactions and self-assembly of systems containing a distribution of PFAS and hydrogenated surfactants; molecular scale insight of PFAS behavior at complex liquid-liquid, air-liquid, and liquid-solid interfaces; and advanced understanding of the role of PFAS surfactants in interfacial properties that define a wide range of technological applications. This fundamental knowledge supports improved water quality and the design of functional materials with tailored properties. The coupling of materials-by-design research with environmental, health, and societal impacts will form the basis of concerted efforts toward outreach and education of early career scientists and engineers through the engagement of undergraduate students in research and the development of new course materials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
全氟烷基物质和多氟烷基物质 (PFAS),也称为“永远的化学品”,由于其高化学稳定性和热稳定性以及使固体表面不粘、稳定消防泡沫和制造泡沫的独特能力而具有广泛的应用。 PFAS 与水和碳氢化合物不混溶,释放到环境中后会发生生物累积、难以降解,并可能对健康造成不利影响。这些因素推动了减少未来 PFAS 释放和隔离释放的 PFAS 的举措。为了开发支持改善水质和设计具有定制特性的功能材料的知识,该项目将研究水溶液以及水-空气、水-油和水-固体界面中的 PFAS 表面活性剂。该项目将开发有关 PFAS 特性的基础知识,这些特性可以对环境(更有效、更少量地使用氟化表面活性剂、氟化表面活性剂的修复)、健康(氟碳表面活性剂如何与碳氢化合物相互作用)产生积极影响。表面活性剂和(生物)聚合物)和技术(用于隔离 PFAS 的新材料和方法的合理设计,以及对产品中 PFAS 潜在替代品的新化学设计的计算评估)。材料设计研究与环境的结合。 、健康和社会影响将被纳入通过本科生参与研究和新课程材料开发而对科学家和工程师进行推广和教育的共同努力中。全氟烷基物质和多氟烷基物质(PFAS)包括氟化物PFAS 表面活性剂因其高化学稳定性和热稳定性以及独特的表面改性能力而具有广泛的应用,该表面活性剂在环境中具有极强的耐降解性,可以生物蓄积,并可能对健康造成不良影响。协调一致的计算和实验工作,解决了 PFAS 在本体水中和界面处的分子、纳米级组织问题。该研究分为三个研究主题:(1) PFAS 与其他分子的竞争性分子相互作用和自组装。 (2) PFAS 和碳氢表面活性剂在水-空气和水-油界面上的组织和相互作用对于界面上的 PFAS 行为至关重要。 (3) PFAS 相互作用促进其在水成膜泡沫 (AFFF) 等关键应用中的替代,并优化泡沫分馏和曝气等 PFAS 封存方法。结合到与环境中 PFAS 的命运相关的固体表面模型以及用于使表面不粘的 PFAS 的替代品。该项目将产生有关包含 PFAS 分布的系统的相互作用和自组装的新知识。和氢化表面活性剂;在复杂的液-液、气-液和液-固界面上对 PFAS 行为的分子尺度洞察,以及对 PFAS 表面活性剂在定义广泛的界面性质中的作用的深入了解;这些基础知识支持改善水质和具有定制特性的功能材料的设计,将材料设计研究与环境、健康和社会影响相结合,将构成共同努力进行推广和教育的基础。通过本科生参与研究和新课程材料的开发,培养早期职业科学家和工程师。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marina Tsianou其他文献
Controlling the self-assembly of perfluorinated surfactants in aqueous environments
- DOI:
10.1039/d1cp00049g - 发表时间:
2021-04 - 期刊:
- 影响因子:3.3
- 作者:
Dengpan Dong;Samhitha Kancharla;Justin Hooper;Marina Tsianou;Dmitry Bedrov;Paschalis Alexandridis - 通讯作者:
Paschalis Alexandridis
Marina Tsianou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marina Tsianou', 18)}}的其他基金
REU Site: Plastic Recycling and Advanced Chemical-physical Transformations for Improved Circular Economy (PRACTICE-REU)
REU 网站:塑料回收和先进的化学物理转化以改善循环经济 (PRACTICE-REU)
- 批准号:
2150424 - 财政年份:2022
- 资助金额:
$ 30.11万 - 项目类别:
Standard Grant
Dissolution Processing of Nanostructured Polymers Tailored for Effective Utilization of Cellulosics
为有效利用纤维素而定制的纳米结构聚合物的溶解加工
- 批准号:
1159981 - 财政年份:2012
- 资助金额:
$ 30.11万 - 项目类别:
Standard Grant
Isothermal Titration Calorimeter for Bio/Nano-Materials Research and Education
用于生物/纳米材料研究和教育的等温滴定量热仪
- 批准号:
1134371 - 财政年份:2011
- 资助金额:
$ 30.11万 - 项目类别:
Standard Grant
RAPID for Gulf of Mexico Oil Spill: Interactions of Crude Oil with Dispersants and Naturally Occurring Particles
墨西哥湾漏油事件的 RAPID:原油与分散剂和自然产生的颗粒的相互作用
- 批准号:
1049395 - 财政年份:2010
- 资助金额:
$ 30.11万 - 项目类别:
Standard Grant
相似国自然基金
肿瘤细胞外囊泡ETV4活化间质微环境CAFs促进胰腺癌侵袭转移的分子机理及精准诊疗标志物研究
- 批准号:82303419
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
转运蛋白SmABCG1介导丹参酮类成分细胞外排的分子机制研究
- 批准号:82304662
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
GPI锚定蛋白Ly6D通过Fosl1促进胰腺癌转移的分子机制研究
- 批准号:82303397
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
超高压介导的山楂果汁甜味感知变化及其分子作用机制研究
- 批准号:32302270
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
扶中消积进展方下调METTL3介导的m6A修饰作用激活铁死亡抑制结直肠癌的生长与肝转移的分子机制研究
- 批准号:82305345
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
- 批准号:
2319096 - 财政年份:2024
- 资助金额:
$ 30.11万 - 项目类别:
Standard Grant
Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
- 批准号:
2319098 - 财政年份:2024
- 资助金额:
$ 30.11万 - 项目类别:
Standard Grant
CAS: Collaborative Research: Ambient Polyvinyl Chloride (PVC) Upgrading Using Earth-Abundant Molecular Electrocatalysts
CAS:合作研究:使用地球上丰富的分子电催化剂升级常温聚氯乙烯 (PVC)
- 批准号:
2347912 - 财政年份:2024
- 资助金额:
$ 30.11万 - 项目类别:
Standard Grant
CAS: Collaborative Research: Ambient Polyvinyl Chloride (PVC) Upgrading Using Earth-Abundant Molecular Electrocatalysts
CAS:合作研究:使用地球上丰富的分子电催化剂升级常温聚氯乙烯 (PVC)
- 批准号:
2347913 - 财政年份:2024
- 资助金额:
$ 30.11万 - 项目类别:
Standard Grant
Collaborative Research: Catholyte Molecular Design For Non-aqueous Mg-organic Hybrid Redox Flow Batteries
合作研究:非水镁有机混合氧化还原液流电池的阴极电解液分子设计
- 批准号:
2419938 - 财政年份:2024
- 资助金额:
$ 30.11万 - 项目类别:
Standard Grant