Hyperbolic Geometry and Gravitational Waves
双曲几何和引力波
基本信息
- 批准号:2309084
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award aims to improve the ability to compute gravitational waves and black hole perturbations using hyperbolic geometry. Hyperbolic geometry plays a crucial role in several scientific fields, including mathematics, physics, biology, and machine learning. By exploiting the benefits of asymptotically hyperbolic time surfaces, called hyperboloidal surfaces, we can efficiently represent outgoing waves in an infinite domain, allowing us to access the gravitational wave flux far away from its sources and avoid the outer boundary treatment of finite computational grids. This award will contribute to the broader understanding of the interactions between wave propagation and hyperbolic geometry and provide applications to improve the solution of fundamental problems in science and engineering. Additionally, it will support the education and training of a highly interdisciplinary student and promote public scientific literacy through outreach efforts, including a summer school on wave propagation.The hyperboloidal compactification technique maps infinite domains to finite regions using scri-fixing and Penrose compactification, thereby translating global problems into local ones. This technique significantly benefits the numerical and analytical treatment of spacetime perturbations and gravitational waves. The award activity will be divided into five subprojects to investigate the applications of hyperboloidal surfaces with different focuses and risk profiles. The first three subprojects focus on (i) broadening the range of applications of the method in black hole perturbation theory, (ii) providing detailed numerical analysis, and (iii) implementing hyperboloidal compactification for scattering problems in unbounded domains. The fourth subproject will experiment with bending up time surfaces to improve the computational efficiency of existing codes for nonlinear Einstein equations. The fifth subproject will explore the application of hyperboloidal surfaces to quantum fields in black hole spacetimes. The potential contributions of the project include improving the numerical and analytical treatment of spacetime perturbations and gravitational waves, providing rigorous guidelines for the choices of free parameters, and opening up new directions for future research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项旨在提高使用双曲线几何形状计算重力波和黑洞扰动的能力。双曲线几何形状在几个科学领域,包括数学,物理学,生物学和机器学习。通过利用渐近双曲时表面的益处(称为倍重表面),我们可以有效地表示无限域中的传出波,从而使我们能够访问远离其源的重力波磁通量,并避免对有限计算网格的外部边界处理。该奖项将有助于更广泛地理解波传播与双曲线几何形状之间的相互作用,并为改善科学和工程中基本问题的解决方案提供了应用。此外,它将支持高度跨学科的学生的教育和培训,并通过外展努力,包括一所暑期传播的暑期学校来促进公共科学素养。折叠压实技术将无限领域映射到使用SCRI固定和彭罗斯压实的有限区域,从而将全球问题转化为当地问题。该技术显着有益于时空扰动和重力波的数值和分析处理。奖励活动将分为五个副标题,以调查具有不同重点和风险特征的倍曲面表面的应用。前三个子项目的重点是(i)扩大该方法在黑洞扰动理论中的应用范围,(ii)提供详细的数值分析,以及(iii)实施无界域中散射问题的倍曲面紧凑型。第四个子项目将尝试弯曲时间表面,以提高非线性爱因斯坦方程的现有代码的计算效率。第五个子项目将探索倍曲面表面在黑洞空间中的量子场的应用。该项目的潜在贡献包括改善时空扰动和重力波的数值和分析处理,为选择免费参数的选择提供了严格的准则,并为未来的研究打开了新的方向。该奖项反映了NSF的法规使命,并认为通过基金会的知识优点和广泛的critia criter scritia criter critia criter criteria criter critia criter critia criteria criter critia criteria criteria criteria criteria criteria criteria crietia rectiria均值得一评论。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anil Zenginoglu其他文献
Data Science Education in Undergraduate Physics: Lessons Learned from a Community of Practice
本科物理中的数据科学教育:从实践社区中汲取的经验教训
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Karan Shah;Julie Butler;Alexis Knaub;Anil Zenginoglu;William Ratcliff;Mohammad Soltanieh - 通讯作者:
Mohammad Soltanieh
Hyperboloidal foliations with scri-fixing in spherical symmetry
具有球对称划线固定的双曲面叶状结构
- DOI:
10.1142/9789812834300_0213 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Anil Zenginoglu;S. Husa - 通讯作者:
S. Husa
A null infinity layer for wave scattering
- DOI:
- 发表时间:
2021-11 - 期刊:
- 影响因子:0
- 作者:
Anil Zenginoglu - 通讯作者:
Anil Zenginoglu
Symmetric integration of the 1+1 Teukolsky equation on hyperboloidal foliations of Kerr spacetimes
克尔时空双曲面叶状结构上 1 1 Teukolsky 方程的对称积分
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
C. Markakis;Sean Bray;Anil Zenginoglu - 通讯作者:
Anil Zenginoglu
Numerical calculations near spatial infinity
空间无穷大附近的数值计算
- DOI:
10.1088/1742-6596/66/1/012027 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Anil Zenginoglu - 通讯作者:
Anil Zenginoglu
Anil Zenginoglu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
奇异黎曼叶状结构的微分几何学研究
- 批准号:12371048
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于拓扑几何学的致密油藏跨尺度润湿机理研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于拓扑几何学的致密油藏跨尺度润湿机理研究
- 批准号:42102149
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
非欧几何学的若干历史问题研究
- 批准号:12161086
- 批准年份:2021
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于代数几何学的统计学习理论研究
- 批准号:12171382
- 批准年份:2021
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Geometry of Gravitational Fields
引力场的几何
- 批准号:
23KK0048 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Gravitational Instantons, Mirror Symmetry, and Enumerative Geometry
引力瞬子、镜像对称和枚举几何
- 批准号:
2204109 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Testing the Geometry of the Universe with Gravitational Lensing
用引力透镜测试宇宙的几何形状
- 批准号:
509095-2017 - 财政年份:2017
- 资助金额:
$ 15万 - 项目类别:
University Undergraduate Student Research Awards
Numerical analysis of problems in gravitational physics and differential geometry
引力物理和微分几何问题的数值分析
- 批准号:
444814-2013 - 财政年份:2015
- 资助金额:
$ 15万 - 项目类别:
Postgraduate Scholarships - Doctoral
Numerical analysis of problems in gravitational physics and differential geometry
引力物理和微分几何问题的数值分析
- 批准号:
444814-2013 - 财政年份:2014
- 资助金额:
$ 15万 - 项目类别:
Postgraduate Scholarships - Doctoral