Hybrid discretizations in solid mechanics for non-linear and non-smooth problems

固体力学中非线性和非光滑问题的混合离散化

基本信息

项目摘要

Modern finite element methods currently play an important role in the construction, design and development of new materials, innovative products and production processes. Despite successful research in the past, there are still many open problems, e.g., artificial stiffening effects, numerical instabilities and undesired mesh distortion sensitivity. Within this project, a special focus is on geometrical and material non-linearities, nearly incompressible, anisotropic and generalized materials as well as contact and interface models, since these fields are of great theoretical and practical relevance. Discontinuous Galerkin (DG) methods may be seen as generalizations of continuous methods, thus offering additional features and options for the improvement of numerical computations in the aforementioned fields. This comes at a cost, as DG methods require far more degrees of freedom and memory consumption than continuous discretizations on the same mesh. To improve this issue, we investigate hybrid discontinuous Galerkin methods allowing for a significant reduction of global degrees of freedom via static condensation.Our interdisciplinary group represents three research fields: Applied Mechanics, Numerical Analysis and Scientific Computing. Beyond the interdisciplinary research work within the team, we identified joint scientific goals with three different teams within the priority programme. Our aim is to explore the potential and the limitations of hybrid discontinuous Galerkin approximations in solid mechanics and to identify, develop and analyze related methods, which allow for an improvement of the performance in terms of convergence, robustness and stability without increasing the numerical effort.A first benchmarking of the hybrid methods showed promising results, which call for more investigations in the fruitful scientific environment of the priority programme. New symmetric hybrid DG methods shall be developed for the simulation of generalized material models in damage and plasticity as well as multi-scale problems. The DG concept opens up entirely new possibilities for adaptivity which shall be exploited based on proper error estimates. Within the field of interfaces, new promising discretization schemes for contact, delamination and non-matching meshes, being derived from the hybrid DG concept, will be developed and investigated. Existing knowledge about continuous methods will be exploited, whenever this is advantageous, to compare and transfer related technologies from continuous finite element and isogeometric methods to DG approximations and vice versa. For example, in contrast to DG methods, which allow for maximal discontinuity between the elements, isogeometric methods are based on maximal smoothness between the elements. Efficiency of isogeometric methods will be improved in a hybrid patch-wise approach. Within the patches maximal smoothness is used, while in between a discontinuous approach provides mesh flexibility.
现代有限元方法目前在新材料,创新产品和生产过程的建设,设计和开发中起着重要作用。尽管过去成功进行了研究,但仍然存在许多开放问题,例如人造僵硬的效果,数值不稳定性和不想要的网格失真敏感性。在该项目中,特别重点是几何和材料非线性,几乎不可压缩,各向异性和广义材料以及接触和界面模型,因为这些领域具有很大的理论和实用性相关性。不连续的Galerkin(DG)方法可以看作是连续方法的概括,因此为改进上述字段中数值计算提供了其他功能和选项。这是有代价的,因为DG方法比同一网格上的连续离散化需要更多的自由度和记忆消耗。为了改善这个问题,我们研究了混合不连续的盖尔金方法,允许通过静态凝结大大降低全球自由度。 除了团队内的跨学科研究工作外,我们还确定了优先计划中三个不同团队的联合科学目标。我们的目的是探索固体力学中混合不连续的galerkin近似值的潜力和局限性,并识别,开发和分析相关方法,从而可以在收敛性,鲁棒性和稳定性方面改善性能,而不必增加数值的努力,而不必增加效力的结果,以提高效果的结果,以提高效率的研究,以提高效果的研究,以提高效率的研究。应开发新的对称混合DG方法,以模拟损伤和可塑性以及多规模问题的通用材料模型。 DG概念为适应性开辟了全新的可能性,应根据适当的错误估计来利用。在界面领域,将开发和研究新的有前途的离散化计划,用于接触,分层和非匹配网格,从混合DG概念中得出。只要有利,就将利用有关连续方法的现有知识,以比较和传输相关的技术从连续有限元和iSOOGEOMETRIC方法到DG近似值,反之亦然。例如,与DG方法相反,DG方法允许元素之间的最大不连续性,同几何方法基于元素之间的最大平滑度。在混合贴片方法中,等几何方法的效率将提高。在补丁中,使用最大光滑度,而在不连续的方法之间则使用网格灵活性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professorin Dr.-Ing. Stefanie Reese其他文献

Professorin Dr.-Ing. Stefanie Reese的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professorin Dr.-Ing. Stefanie Reese', 18)}}的其他基金

Model order reduction in space and parameter dimension - towards damage-based modeling of polymorphic uncertainty in the context of robustness and reliability
空间和参数维度的模型降阶 - 在鲁棒性和可靠性的背景下实现基于损伤的多态不确定性建模
  • 批准号:
    312911604
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Model reduction and substructure technique - application to modular shell structures made of ultra high performance concrete
模型简化和子结构技术——在超高性能混凝土模块化壳结构中的应用
  • 批准号:
    257611820
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Multiscale modelling of joining processes under consideration of the thermo-mechano-chemical behaviour in the interface
考虑界面热机械化学行为的连接过程的多尺度建模
  • 批准号:
    264271912
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Multiscale modelling of joining processes taking account of the thermomechanical-chemical behavior in the boundary layer
考虑边界层热机械化学行为的连接过程的多尺度建模
  • 批准号:
    227716235
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Finite element-based micromechanical modelling of phase interactions in filler reinforced elastomers
基于有限元的填料增强弹性体中相相互作用的微机械建模
  • 批准号:
    196288536
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Entwicklung neuer Technologien zur numerischen Simulation quasistatisch-dynamisch kombinierter Umformverfahren
准静态-动态组合成形过程数值模拟新技术开发
  • 批准号:
    81609791
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Modellierung und Simulation des Werkstoff- und Strukturverhaltens bei der elektromagnetischen Blechumformung
电磁钣金成形中材料和结构行为的建模和仿真
  • 批准号:
    5437268
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Research Units
Experimentelle und theoretische Untersuchungen zur Kriechfestigkeit von einkristallinen Superlegierungen bei Temperaturen oberhalb von 1000°C
1000℃以上单晶高温合金蠕变强度的实验与理论研究
  • 批准号:
    5387085
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Direct data-driven computational mechanics for anelastic material behaviours
用于迟弹性材料行为的直接数据驱动计算力学
  • 批准号:
    431386925
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
A unified continuum mechanical model framework for initial and induced anisotropy - systematic investigations of anisotropic damage
用于初始各向异性和诱导各向异性的统一连续力学模型框架 - 各向异性损伤的系统研究
  • 批准号:
    453715964
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

离散智能制造定制化驱动的业务过程生成与过程库构建
  • 批准号:
    62362067
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
实用化高阶离散调制连续变量量子密钥分发理论及关键技术研究
  • 批准号:
    62301517
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
反问题变分正则化方法的优化和离散误差估计
  • 批准号:
    12371424
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
基于双线性KP族约化的可积离散和局域波研究
  • 批准号:
    12375003
  • 批准年份:
    2023
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目
加标Petri网框架下的网络化离散事件系统临界可观性验证与强化控制
  • 批准号:
    62303375
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Design and Analysis of Structure Preserving Discretizations to Simulate Pattern Formation in Liquid Crystals and Ferrofluids
模拟液晶和铁磁流体中图案形成的结构保持离散化的设计和分析
  • 批准号:
    2409989
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations
偏微分方程有限元与神经网络离散化的比较研究
  • 批准号:
    2424305
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Theoretical Developments and Applications of Conservative Discretizations
保守离散化的理论发展与应用
  • 批准号:
    RGPIN-2019-07286
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
This PhD project is about the development of structure preserving (e.g. mass and total energy) finite element discretizations of flow models in Geophy
该博士项目是关于地球物理学中流动模型的结构保持(例如质量和总能量)有限元离散化的发展
  • 批准号:
    2753929
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Numerical algorithms for higher-order accurate discretizations of flows on deforming domains
变形域上流动高阶精确离散的数值算法
  • 批准号:
    RGPIN-2015-05606
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了