Collaborative Research: Machine Learning for Student Reasoning during Challenging Concept Questions

协作研究:机器学习在挑战性概念问题中帮助学生推理

基本信息

  • 批准号:
    2226553
  • 负责人:
  • 金额:
    $ 17.83万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-04-01 至 2026-03-31
  • 项目状态:
    未结题

项目摘要

Artificial Intelligence (AI), and more specifically, language models, have been drastically changing how students and instructors think about learning and assessment. While there are legitimate concerns about how the use of these tools could be detrimental to learning, this research project aims to leverage language models to better prepare engineering learners of the 21st Century. The research project will use modern AI and machine learning (ML) tools to automate analysis of student-written responses to challenging concept questions. These qualitative questions are often used in large STEM classes to support active learning pedagogies; they require minimum calculations and focus on the application of underlying physical and chemical phenomena to various situations. With previous NSF funding, we have developed the Concept Warehouse (NSF DUE 1023099, 1821439, 2135190), a classroom response system where students provide written justifications to concept questions. Providing written justifications targets development of reasoning and sense-making skills in students and can also better prepare them for discussions with peers resulting in broader effectiveness of active learning pedagogies. However, expository prose also presents a daunting amount of information for instructors to process. In this project, we will leverage recent advancements in machine learning tools and natural language processing technologies to develop automated processes to analyze student-written justifications to challenging concept questions.This project will join engineering education researchers at Tufts University and AI/ML researchers at the University of Massachusetts Lowell. We will focus on the following research questions: (1) Based on human coding, what ideas do students use in explaining challenging concept questions in statics? How do these vary among challenging concept questions studied? (2) How well can Transformer-based ML models replicate the coding done by the human coders? For isomorphic question pairs, how well do ML models trained on the first question’s explanations perform on the second question? More generally, can ML-based coding based on one question be applied successfully to code the data for other questions, and what are the limits to this generalizability? We will complete three research tasks: (1) data collection of written responses for the same concept questions from nine or more engineering statics instructors at different institutions; (2) manual coding of a subset of students’ written explanations, and (3) developing and evaluating ML coding methods, followed by ML coding of the complete set of collected written explanations. While the project focuses on engineering statics, it is expected that findings will transfer to challenging questions in other engineering and science topics. Ultimately, successful implementation of machine learning will support learning and instruction of challenging concepts. Expected outcomes include a developing understanding of advantages and disadvantages of different ML approaches including their accuracy, determination of minimum data size requirements to apply the algorithms, and the ability to transfer learning from one question to isomorphic questions that require similar reasoning patterns. For instructors, data generated can provide real-time information about the different ways students are reasoning with examples of common cases. For engineering education researchers, characterizing explanations in different settings will support investigations of how student thinking relates to instructional practices and environments.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能(AI),更具体地说,语言模型,已经极大地改变了学生和教师对学习和评估的看法,尽管人们有理由担心这些工具的使用可能会给学习带来困扰,但该研究项目的目的是。利用语言模型更好地为 21 世纪的工程学习者做好准备 该研究项目将使用现代人工智能和机器学习 (ML) 工具来自动分析学生对具有挑战性的概念问题的书面回答,这些定性问题通常在大型 STEM 课程中使用。支持主动学习教学法;它们需要最少的计算,并专注于将潜在的物理和化学现象应用于各种情况。在之前的 NSF 资助下,我们开发了概念仓库(NSF DUE 1023099、1821439、2135190),这是一个学生提供书面反馈的系统。提供书面理由的目的是培养学生的推理和意义建构能力,也可以让他们更好地为与同伴的讨论做好准备,从而获得更广泛的有效性。然而,说明性散文还提供了大量信息供教师处理,在这个项目中,我们将利用机器学习工具和自然语言处理技术的最新进展来开发自动化流程来分析学生撰写的挑战理由。该项目将与塔夫茨大学的工程教育研究人员和马萨诸塞州洛厄尔大学的人工智能/机器学习研究人员一起关注以下研究问题:(1)基于人类编码,学生在解释挑战性时使用什么想法。中的概念问题这些在研究的具有挑战性的概念问题中有何不同?(2)基于 Transformer 的 ML 模型复制人类编码员完成的编码的效果如何?对于同构问题对,根据第一个问题的解释进行训练的 ML 模型的表现如何?第二个问题?更一般地说,基于一个问题的基于机器学习的编码是否可以成功应用于其他问题的数据编码,这种普遍性的限制是什么?我们将完成三个研究任务:(1)书面数据收集?相同的回应来自不同机构的九名或更多工程静力学讲师的概念问题;(2) 对学生书面解释的子集进行手动编码,以及 (3) 开发和评估 ML 编码方法,然后对收集的整套书面解释进行 ML 编码虽然该项目侧重于工程静力学,但预计研究结果将转移到其他工程和科学主题中的挑战性问题,最终,机器学习的成功实施将支持对具有挑战性的概念的学习和指导。预期成果包括对优势和发展的理解。不同机器学习方法的缺点,包括它们的准确性、确定应用算法的最小数据大小要求,以及将学习从一个问题转移到需要类似推理模式的同构问题的能力,对于教师来说,生成的数据可以提供有关学生推理的不同方式的实时信息。对于工程教育研究人员来说,在不同环境中描述解释将支持对学生思维如何与教学实践和环境相关的调查。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和环境进行评估,被认为值得支持。更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Milo Koretsky其他文献

WIP: Instances of Dynamic Pedagogical Decision Making in the Uptake of a Technology Tool
WIP:采用技术工具时动态教学决策的实例
  • DOI:
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Harpreet Auby;John Galisky;Susan Nolen;Milo Koretsky
  • 通讯作者:
    Milo Koretsky
WIP: Instances of Dynamic Pedagogical Decision Making in the Uptake of a Technology Tool
WIP:采用技术工具时动态教学决策的实例
WIP: Using Machine Learning to Automate Coding of Student Explanations to Challenging Mechanics Concept Questions
WIP:使用机器学习自动编码学生对具有挑战性的力学概念问题的解释
  • DOI:
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Harpreet Auby;Namrata Shivagunde;Anna Rumshisky;Milo Koretsky
  • 通讯作者:
    Milo Koretsky

Milo Koretsky的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Milo Koretsky', 18)}}的其他基金

Collaborative Research: Research Initiation: Complementary affordances of virtual and physical laboratories for developing engineering epistemic practices
合作研究:研究启动:虚拟和物理实验室的补充功能,用于开发工程认知实践
  • 批准号:
    2204885
  • 财政年份:
    2022
  • 资助金额:
    $ 17.83万
  • 项目类别:
    Standard Grant
Collaborative Research: Research Initiation: Complementary affordances of virtual and physical laboratories for developing engineering epistemic practices
合作研究:研究启动:虚拟和物理实验室的补充功能,用于开发工程认知实践
  • 批准号:
    2204885
  • 财政年份:
    2022
  • 资助金额:
    $ 17.83万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding Context: Propagation and Effectiveness of the Concept Warehouse in Mechanical Engineering at Five Diverse Institutions and Beyond
合作研究:理解背景:机械工程概念仓库在五个不同机构及其他机构的传播和有效性
  • 批准号:
    2135190
  • 财政年份:
    2021
  • 资助金额:
    $ 17.83万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding Context: Propagation and Effectiveness of the Concept Warehouse in Mechanical Engineering at Five Diverse Institutions and Beyond
合作研究:理解背景:机械工程概念仓库在五个不同机构及其他机构的传播和有效性
  • 批准号:
    1821439
  • 财政年份:
    2018
  • 资助金额:
    $ 17.83万
  • 项目类别:
    Continuing Grant
Enhancing STEM Education at Oregon State University (ESTEME@OSU)
加强俄勒冈州立大学的 STEM 教育 (ESTEME@OSU)
  • 批准号:
    1347817
  • 财政年份:
    2014
  • 资助金额:
    $ 17.83万
  • 项目类别:
    Continuing Grant
Collaborative Research: Studying and Supporting Productive Disciplinary Engagement in Demanding STEM Learning Environments across Cultures and Settings
协作研究:研究和支持跨文化和环境的高要求 STEM 学习环境中的富有成效的学科参与
  • 批准号:
    1261930
  • 财政年份:
    2013
  • 资助金额:
    $ 17.83万
  • 项目类别:
    Standard Grant
Development and Implementation of Interactive Virtual Laboratories to Help Students Learn Threshold Concepts in Thermodynamics
开发和实施交互式虚拟实验室,帮助学生学习热力学阈值概念
  • 批准号:
    1245482
  • 财政年份:
    2013
  • 资助金额:
    $ 17.83万
  • 项目类别:
    Standard Grant
Collaborative Research: Fire: Productive Disciplinary Engagement in a Complex Virtual Engineering Task; Authenticity, Rolls, and Activity
合作研究:火灾:复杂虚拟工程任务中富有成效的学科参与;
  • 批准号:
    1251866
  • 财政年份:
    2013
  • 资助金额:
    $ 17.83万
  • 项目类别:
    Standard Grant
Feedback in Complex, Authentic, Industrially Situated Engineering Projects using Episodes as a Discourse Analysis Framework
使用情节作为话语分析框架对复杂、真实、工业场景的工程项目进行反馈
  • 批准号:
    1160353
  • 财政年份:
    2012
  • 资助金额:
    $ 17.83万
  • 项目类别:
    Standard Grant
Collaborative Research: Design for Impact - Creating Effective Student Activities that Faculty Will Use
协作研究:影响力设计 - 创建教师将使用的有效学生活动
  • 批准号:
    1225221
  • 财政年份:
    2012
  • 资助金额:
    $ 17.83万
  • 项目类别:
    Standard Grant

相似国自然基金

基于Udwadia-Kalaba方法的柔性关节机器人动力学建模与主动柔顺性控制研究
  • 批准号:
    51705116
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
刚柔耦合协作机器人顺应性交互动力学研究
  • 批准号:
    91748111
  • 批准年份:
    2017
  • 资助金额:
    63.0 万元
  • 项目类别:
    重大研究计划
面向人机共融协作的柔性双臂机器人安全作业机理研究
  • 批准号:
    51575157
  • 批准年份:
    2015
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
不完全量测与通信局限下的多机器人协作实时SLAM一致性分析研究
  • 批准号:
    61305134
  • 批准年份:
    2013
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
基于群体智能的多Agent协作模型与适应性研究
  • 批准号:
    60905066
  • 批准年份:
    2009
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Fusion of Siloed Data for Multistage Manufacturing Systems: Integrative Product Quality and Machine Health Management
协作研究:多级制造系统的孤立数据融合:集成产品质量和机器健康管理
  • 批准号:
    2323084
  • 财政年份:
    2024
  • 资助金额:
    $ 17.83万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Large-Scale Spatial Machine Learning for 3D Surface Topology in Hydrological Applications
合作研究:OAC 核心:水文应用中 3D 表面拓扑的大规模空间机器学习
  • 批准号:
    2414185
  • 财政年份:
    2024
  • 资助金额:
    $ 17.83万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
  • 批准号:
    2422926
  • 财政年份:
    2024
  • 资助金额:
    $ 17.83万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 17.83万
  • 项目类别:
    Continuing Grant
Collaborative Research:CIF:Small: Acoustic-Optic Vision - Combining Ultrasonic Sonars with Visible Sensors for Robust Machine Perception
合作研究:CIF:Small:声光视觉 - 将超声波声纳与可见传感器相结合,实现强大的机器感知
  • 批准号:
    2326904
  • 财政年份:
    2024
  • 资助金额:
    $ 17.83万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了