Collaborative Research: A Bioinspired Approach towards Sustainable Membranes for Resilient Brine Treatment
合作研究:用于弹性盐水处理的可持续膜的仿生方法
基本信息
- 批准号:2226505
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Many water treatment and industrial processes generate significant amounts of high-salinity brines including seawater desalination, inland brackish water desalination, and oil and gas production by fracking. The management of hazardous high-salinity brines from water desalination plants and oil/gas production wells has emerged as a global environmental challenge. Membrane distillation (MD) is a promising technology for the treatment of high-salinity brines that could reduce the amounts of brine that need to be disposed of while generating a purified water permeate to support industrial and agricultural usages. During the last decade, significant progress has been made toward the development of more efficient MD membranes with high wetting and scaling resistance for high-salinity brine treatment. However, these membranes are typically prepared by modifying their surfaces with long-chain per- and polyfluoroalkyl substances (PFAS), which have become priority pollutants due to increasing concerns about their persistence in the environment, stability, and toxicity to humans and living organisms. The overarching goal of this project is to explore the design and fabrication of wetting- and scaling-resistant MD membranes for brine treatment without the use of PFAS. Inspired by the unique repellency of springtails towards low surface tension liquids, the Principal Investigators propose to test the hypothesis that efficient MD membranes, with both high wetting resistance and high scaling resistance, can be fabricated by covalent attachment of springtail-inspired supracolloidal structures onto the surface of a hydrophobic flat sheet membrane. The successful completion of this project will benefit society through the development of new fundamental knowledge to guide the design and fabrication of PFAS-free membrane materials for robust and efficient brine treatment. Additional benefits to society will be achieved through outreach and educational activities including the mentoring of one graduate student at the University of Tennessee, Knoxville and one graduate student at Colorado State University.The effectiveness of membrane distillation (MD) as a brine treatment technology is limited by both the intrusion of brines into membrane pores (membrane pore wetting) and the precipitation of minerals on the membrane surfaces (membrane scaling). The goal of this project is to design and fabricate a new family of biomimetic wetting- and scaling-resistant MD membranes without using PFAS building blocks. To advance this goal, the Principal Investigators (PIs) proposal to explore new strategies to modify the surface of a commercially available hydrophobic flat sheet membrane by covalent attachment of supracolloidal structures that mimic the overhang texture of springtails and their unique capability to repel low surface tension liquids. These supracolloidal structures will be formed through controlled assembly of smaller colloids onto the surfaces of larger colloids that have overhang structures with negative curvature and non-fluorinated ligands. The specific objectives of the research are to: 1) Elucidate the design criteria of supracolloidal structures for wetting resistant membranes, 2) Characterize and unravel the mechanisms of scaling resistance of the new biomimetic MD membranes, and 3) Evaluate the treatment effectiveness of the new MD membranes using model brine mixtures and a high salinity produced water from an oil and gas production field in Colorado. The successful completion of this project has the potential for transformative impact through the generation of new fundamental knowledge and functional materials to advance the development of PFAS-free MD membranes for efficient and cost-effective treatment of high salinity brines. To implement the educational and training goals of this project, the Principal Investigators (PIs) plan to integrate the findings from this research into existing undergraduate and graduate courses at the University of Tennessee, Knoxville (UTK) and Colorado State University (CSU). In addition, the PIs propose to leverage existing programs at UTK and CSU to launch outreach activities to recruit and engage high and middle school students from underrepresented groups with a focus on the utilization of bioinspired materials to improve water sustainability.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多水处理和工业过程都会产生大量高盐度盐水,包括海水淡化、内陆苦咸水淡化以及通过水力压裂生产石油和天然气。来自海水淡化厂和石油/天然气生产井的危险高盐卤水的管理已成为全球环境挑战。膜蒸馏(MD)是一种很有前景的高盐度盐水处理技术,它可以减少需要处理的盐水量,同时产生纯化水渗透物以支持工业和农业用途。在过去的十年中,在开发更高效的 MD 膜方面取得了重大进展,该膜具有高润湿性和抗结垢性,用于高盐度盐水处理。然而,这些膜通常是通过用长链全氟烷基物质和多氟烷基物质(PFAS)对其表面进行改性来制备的,由于人们越来越担心它们在环境中的持久性、稳定性以及对人类和生物体的毒性,这些物质已成为优先污染物。该项目的总体目标是探索用于不使用 PFAS 的盐水处理的防润湿和防垢 MD 膜的设计和制造。受到弹尾对低表面张力液体的独特排斥性的启发,主要研究人员提议测试这样一个假设:通过将受弹尾启发的超胶体结构共价附着到液体上,可以制造出具有高润湿性和高抗结垢性的高效 MD 膜。疏水性平板膜的表面。该项目的成功完成将通过开发新的基础知识来指导无 PFAS 膜材料的设计和制造,以实现稳健、高效的盐水处理,从而造福社会。将通过外展和教育活动实现额外的社会效益,包括指导田纳西大学诺克斯维尔分校的一名研究生和科罗拉多州立大学的一名研究生。膜蒸馏 (MD) 作为盐水处理技术的有效性是有限的通过盐水侵入膜孔(膜孔润湿)和矿物质在膜表面沉淀(膜结垢)来实现。该项目的目标是设计和制造一系列新的仿生防润湿防垢 MD 膜,而不使用 PFAS 构件。为了推进这一目标,主要研究人员 (PI) 提议探索新策略,通过模拟弹尾的悬垂纹理及其独特的排斥低表面张力的能力的超胶体结构的共价连接来修饰市售疏水性平板膜的表面液体。这些超胶体结构将通过将较小的胶体受控地组装到较大的胶体的表面上而形成,该较大的胶体具有带负曲率的悬垂结构和非氟化配体。该研究的具体目标是:1)阐明抗润湿膜的超胶体结构的设计标准,2)表征并揭示新型仿生MD膜的抗结垢机制,以及3)评估新型仿生MD膜的处理效果MD 膜使用来自科罗拉多州石油和天然气生产田的模型盐水混合物和高盐度采出水。该项目的成功完成有可能通过产生新的基础知识和功能材料来推动不含 PFAS 的 MD 膜的开发,从而实现高效且经济高效地处理高盐度盐水,从而产生变革性影响。为了实现该项目的教育和培训目标,首席研究员 (PI) 计划将这项研究的结果整合到田纳西大学诺克斯维尔分校 (UTK) 和科罗拉多州立大学 (CSU) 现有的本科生和研究生课程中。此外,PI 提议利用 UTK 和 CSU 的现有项目开展外展活动,招募和吸引来自代表性不足群体的高中生和中学生,重点是利用仿生材料来提高水的可持续性。该奖项反映了 NSF 的法定使命通过使用基金会的智力优点和更广泛的影响审查标准进行评估,并被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tiezheng Tong其他文献
Activity and Water Footprint of Unconventional Energy Production under Hydroclimate Variation in Colorado
科罗拉多州水文气候变化下非常规能源生产的活动和水足迹
- DOI:
10.1021/acsestwater.0c00064 - 发表时间:
2020-10-16 - 期刊:
- 影响因子:0
- 作者:
Xuewei Du;Huishu Li;Cristian A. Robbins;K. Carlson;Tiezheng Tong - 通讯作者:
Tiezheng Tong
Acute Effects of TiO 2 Nanomaterials on the Viability and Taxonomic Composition of Aquatic Bacterial Communities Assessed via High-Throughput Screening and Next Generation Sequencing
通过高通量筛选和下一代测序评估 TiO 2 纳米材料对水生细菌群落活力和分类组成的急性影响
- DOI:
- 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
C. T. Binh;Tiezheng Tong;J. Gaillard;K. Gray;J. Kelly - 通讯作者:
J. Kelly
Electrochemical Oxidation of Hexafluoropropylene Oxide Dimer Acid (GenX): Mechanistic Insights and Efficient Treatment Train with Nanofiltration.
六氟丙烯氧化物二聚酸 (GenX) 的电化学氧化:机理见解和纳滤高效处理系列。
- DOI:
10.1021/acs.est.9b03171 - 发表时间:
2019-10-10 - 期刊:
- 影响因子:11.4
- 作者:
Nasim E. Pica;J. Funkhouser;Yiming Yin;Zuoyou Zhang;Donato M. Ceres;Tiezheng Tong;J. Blotevogel - 通讯作者:
J. Blotevogel
A non-substrate-specific technique of antifouling and antiwetting Janus membrane fabrication for membrane distillation
用于膜蒸馏的防污和防润湿 Janus 膜制造的非基材特异性技术
- DOI:
10.1016/j.desal.2023.117195 - 发表时间:
2024-03-01 - 期刊:
- 影响因子:9.9
- 作者:
Sifat Kalam;Abhishek Dutta;Xuewei Du;Xuesong Li;Tiezheng Tong;Jongho Lee - 通讯作者:
Jongho Lee
Long-Chain PFASs-Free Omniphobic Membranes for Sustained Membrane Distillation.
用于持续膜蒸馏的不含长链 PFAS 的全疏膜。
- DOI:
10.1021/acsami.2c01499 - 发表时间:
2022-05-10 - 期刊:
- 影响因子:9.5
- 作者:
Xuewei Du;Mohammad Alipanahrostami;Wei Wang;Tiezheng Tong - 通讯作者:
Tiezheng Tong
Tiezheng Tong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tiezheng Tong', 18)}}的其他基金
CAREER: Harnessing Mineralogy and Polymer Science to Elucidate Mechanisms and Mitigation Strategies for Mineral Scaling in Membrane Desalination
职业:利用矿物学和聚合物科学阐明膜淡化中矿物结垢的机制和缓解策略
- 批准号:
2145627 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research: Elucidating the Coupling of Inorganic Scaling and Organic Fouling in Reverse Osmosis Desalination: An Integrated Experimental and Computational Approach
合作研究:阐明反渗透海水淡化中无机结垢和有机污垢的耦合:一种综合实验和计算方法
- 批准号:
2143970 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似国自然基金
基于仿生学视角的蛋黄中铁的转运、吸收分子机制研究
- 批准号:32301979
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
手性植物器官的生物力学与仿生学研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
基于仿生学视角的蛋清(Ca2+)-EEWNPs螯合及促钙吸收机理研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
叩甲科爆发式弹跳运动的功能形态学及仿生学研究
- 批准号:32270483
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于仿生学非线性超材料点阵夹芯结构振动与噪声控制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Bioinspired High Energy Recycling Mechanism Ankle Foot Prosthesis
合作研究:仿生高能回收机制踝足假肢
- 批准号:
2231031 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Bioinspired High Energy Recycling Mechanism Ankle Foot Prosthesis
合作研究:仿生高能回收机制踝足假肢
- 批准号:
2231032 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: A Bioinspired Approach towards Sustainable Membranes for Resilient Brine Treatment
合作研究:用于弹性盐水处理的可持续膜的仿生方法
- 批准号:
2226501 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Design, Flight Control, and Autonomous Navigation of Bioinspired Morphing Micro Aerial Vehicles for Operation in Confined Spaces
合作研究:用于密闭空间操作的仿生变形微型飞行器的设计、飞行控制和自主导航
- 批准号:
2142519 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Design, Flight Control, and Autonomous Navigation of Bioinspired Morphing Micro Aerial Vehicles for Operation in Confined Spaces
合作研究:用于密闭空间操作的仿生变形微型飞行器的设计、飞行控制和自主导航
- 批准号:
2140650 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant