I-Corps: Scalable Artificial Intelligence-Supported Flood Resilience Assessment
I-Corps:可扩展的人工智能支持的防洪评估
基本信息
- 批准号:2308692
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-01 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader impact/commercial potential of this I-Corps project is the development of a scalable, flood resilience software framework to provide fast, accurate, and valid flood damage prediction under various flooding scenarios and at multiple geographic scales. The services provided by the proposed cyberinfrastructure platform may provide scalable, dynamic, intelligent, building-level flood resilience assessment. The proposed technology significantly reduces the workload of measuring house-level lowest floor elevation and largely facilitates community-level flood damage assessment by providing services of on-the-fly damage predictions with user-defined scenarios. One benefit of the successful deployment of the proposed technology may be to help communities quickly explore the spatial distribution of flood risks and test how flood events with varying intensities affect individual houses as well as the whole community. Such knowledge is expected to further benefit government officials, first responders, and resource allocators. The knowledge will also help promote flood awareness at the regional and national levels.This I-Corps project is based on the development of an Artificial Intelligence (AI)-supported geospatial cyberinfrastructure platform for flood damage prediction. Existing community-level flood resilience and adaptation are often investigated in an unscalable manner, making the investigation workflow community-specific with low transferability to other communities or to large geographical scales. In comparison, the proposed technology achieves accurate, fast, and low-cost flood resilience assessment by 1) deriving fine-grained, building-level flood exposure using United States national building footprints and cross-referenced floodplain products, 2) proposing a scalable workflow of lowest floor elevation retrieval, taking advantage of street view images, 3) developing a flood damage simulation paradigm incorporating building characteristics and simulated flood intensity, and 4) designing an online portal for scalable flood resilience assessment, with the capability of interactive updates, flood scenario selection, location queries, and report generation. The proposed AI-supported cyberinfrastructure and flood damage simulation framework are expected to renovate and transform large-scale flood damage assessment and flood situational awareness communication.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该I-Corps项目的更广泛的影响/商业潜力是开发可扩展的洪水弹性软件框架,以在各种洪水场景和多个地理尺度下提供快速,准确和有效的洪水损害预测。拟议的网络基础设施平台提供的服务可以提供可扩展,动态,智能,建筑水平的洪水弹性评估。拟议的技术大大减少了测量房屋级别最低地板高程的工作量,并在很大程度上通过提供用户定义的方案提供即时损害预测的服务来促进社区级别的洪水损失评估。成功部署的技术的好处之一可能是帮助社区迅速探索洪水风险的空间分布,并测试具有不同强度的洪水事件如何影响单个房屋以及整个社区。这种知识有望进一步使政府官员,急救人员和资源分配者受益。 知识还将有助于在地区和国家一级提高洪水意识。该I-Corps项目基于人工智能(AI)支持的地理空间网络基础设施平台的发展,用于洪水损害预测。 经常以不可估量的方式研究现有的社区层面的洪水弹性和适应能力,使调查工作流的调查特定于社区特定于其他社区或对大型地理量表的可转移性。相比之下,提议的技术通过1)通过美国国家建筑足迹和交叉引用的洪泛图产品来实现准确,快速和低成本的洪水复原力评估。在线门户网站可进行可扩展的洪水弹性评估,并具有交互式更新,洪水场景选择,位置查询和报告生成的能力。拟议的AI支持的网络基础设施和洪水破坏模拟框架有望进行翻新和改变大规模的洪水损失评估和洪水情境意识交流。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的智力和更广泛影响的评估来通过评估来支持的,这是值得的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiao Huang其他文献
MapsNet: Multi-level feature constraint and fusion network for change detection
MapsNet:用于变化检测的多级特征约束和融合网络
- DOI:
10.1016/j.jag.2022.102676 - 发表时间:
2022 - 期刊:
- 影响因子:7.5
- 作者:
Jianping Pan;Wei Cui;Xinyong An;Xiao Huang;Hanchao Zhang;Sihang Zhang;Ruiqian Zhang;Xin Li;Weihua Cheng;Yong Hu - 通讯作者:
Yong Hu
Class Distribution Pyramid Experts for Long-tailed Visual Recognition
长尾视觉识别的类分布金字塔专家
- DOI:
10.1109/iciba56860.2023.10165204 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yijie Li;Xiao Huang;Yifan Zhang;Lin Li;Jie Ma - 通讯作者:
Jie Ma
What affects patients’ choice of consultant: an empirical study of online doctor consultation service
影响患者选择咨询师的因素:在线医生咨询服务的实证研究
- DOI:
10.1007/s10660-022-09617-w - 发表时间:
2022-11 - 期刊:
- 影响因子:3.9
- 作者:
Jiang Wu;Xiao Huang;Pu Sun;Xiaofei Zhang - 通讯作者:
Xiaofei Zhang
PALVO: visual odometry based on panoramic annular lens.
PALVO:基于全景环形镜头的视觉里程计。
- DOI:
10.1364/oe.27.024481 - 发表时间:
2019 - 期刊:
- 影响因子:3.8
- 作者:
Hao Chen;Kaiwei Wang;Weijian Hu;Kailun Yang;Ruiqi Cheng;Xiao Huang;J. Bai - 通讯作者:
J. Bai
Multi-Joint Active Collision Avoidance for Robot Based on Depth Visual Perception
基于深度视觉感知的机器人多关节主动避碰
- DOI:
10.1109/jas.2022.105674 - 发表时间:
2022-12 - 期刊:
- 影响因子:0
- 作者:
Hui Li;Xingfang Wang;Xiao Huang;Yifan Ma;Zhihong Jiang - 通讯作者:
Zhihong Jiang
Xiao Huang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
面向智能网卡的可扩展FPGA包分类技术研究
- 批准号:62372123
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向高并发软件的可扩展建模与分析技术研究
- 批准号:62302375
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于随机化的高效可扩展深度学习算法研究
- 批准号:62376131
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
包含时空维度的可扩展光MIMO解调芯片与均衡器
- 批准号:62335019
- 批准年份:2023
- 资助金额:225.00 万元
- 项目类别:重点项目
基于可扩展去蜂窝架构的大规模低时延高可靠通信研究
- 批准号:62371039
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
In vivo Perturb-map: scalable genetic screens with single-cell and spatial resolution in intact tissues
体内扰动图:在完整组织中具有单细胞和空间分辨率的可扩展遗传筛选
- 批准号:
10578616 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Scalable and Interoperable framework for a clinically diverse and generalizable sepsis Biorepository using Electronic alerts for Recruitment driven by Artificial Intelligence (short title: SIBER-AI)
使用人工智能驱动的招募电子警报的临床多样化和通用脓毒症生物库的可扩展和可互操作框架(简称:SIBER-AI)
- 批准号:
10576015 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
PED-PHAM: An Automated and Scalable Spatial Tool That Predicts and Monetizes Health Impacts of the Built, Natural, and Social Environment
PED-PHAM:一种自动化且可扩展的空间工具,可预测建筑、自然和社会环境对健康的影响并从中获利
- 批准号:
10761396 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
CAREER: Scalable monolithic integration of Graphene/MoS2/Graphene artificial neurons and synapses for accelerated machine learning
职业:石墨烯/MoS2/石墨烯人工神经元和突触的可扩展整体集成,用于加速机器学习
- 批准号:
2324651 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
FMRG: Cyber: Scalable Precision Manufacturing of Programmable Polymer Nanoparticles Using Low-temperature Initiated Chemical Vapor Deposition Guided by Artificial Intelligence
FMRG:网络:利用人工智能引导的低温引发化学气相沉积进行可编程聚合物纳米粒子的可扩展精密制造
- 批准号:
2229092 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant