Collaborative Research: Biomechanics of Epithelial Tissue Homeostasis, Collapse, and Eversion

合作研究:上皮组织稳态、塌陷和外翻的生物力学

基本信息

  • 批准号:
    2226156
  • 负责人:
  • 金额:
    $ 36.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

Assembly and organization of cells into functional tissues is essential to development and wound healing. Irregular or uncontrolled growth and assembly of cells leads to pathologies such as tumor formation and cancer. Additionally, model tissues grown in culture into functional cell clusters called organoids have been widely used in drug development and regenerative medicine, as well as in vitro studies of morphogenesis, host-pathogen interactions, and tissue repair. This award supports a combined experimental and computational project that will reveal the biomechanical principles that govern the assembly and organization of cells in epithelial tissue by studying spherical cell monolayers (called acini), which spontaneously collapse and evert polarity (i.e., where the acinus turns itself inside out) when induced to become more contractile. The final everted state is relevant to organoid applications where outer exposure of the apical surface is desired, and it also resembles acinar gland abnormalities in cancer. The knowledge gained from this study will be valuable to fundamental understanding of tissue development as well as control of the structure of cultured organoids. Thus, this project has broad potential impact on advancing human health, as the findings will be directly relevant to establishing the mechanical principles of tissue organization and development. It is also highly relevant to the biomanufacturing of organoids for drug testing, regenerative medicine, or models of disease. This project will support the training and mentorship of diverse graduate and undergraduate students, including students in the University of Florida Digital Arts program, who will render animations from three-dimensional imaging of acinus dynamics for outreach and education purposes. The goal of this project is to understand the biomechanics of acinus stability and eversion using a synergistic combination of experimental and computational approaches. The first objective is to determine the contributions to cellular stresses that lead to mechanical equilibrium of the acinus, testing the hypothesis that surface tensions and/or the lumen pressure are regulated to sustain the acinus at the critical point between stable and unstable equilibrium states. A three-dimensional vertex-based mathematical model will be used to model the interacting cell population in the monolayer, accounting for the surface tensions and curvatures of the apical and basal cell surfaces and the cell-cell interfacial tension. The model will also account for the roles of cell-cell and cell-matrix adhesion in the surface forces and interfacial energies. These parameters will be perturbed experimentally while tracking the 3D morphology of the acinus surfaces via high resolution confocal microscopy. The second objective is to understand how the acinus is perturbed from the equilibrium state and driven to contract and evert to a state of everted polarity, testing the hypothesis that the difference between and apical and basal surface tensions is the mechanical driving force for eversion. The eversion process will be simulated using a dynamic vertex/finite element model accounting for cell contractile and viscous forces, and it will be experimentally tested by triggering eversion via chemical perturbations (e.g. actomyosin activation, inhibition of ECM adhesion) and by laser ablation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
细胞组装和组织成功能组织对于发育和伤口愈合至关重要。细胞不规则或不受控制的生长和组装会导致肿瘤形成和癌症等病理。此外,在培养物中生长成称为类器官的功能细胞簇的模型组织已广泛用于药物开发和再生医学,以及形态发生、宿主-病原体相互作用和组织修复的体外研究。该奖项支持一个综合实验和计算项目,该项目将通过研究球形细胞单层(称为腺泡)来揭示控制上皮组织中细胞组装和组织的生物力学原理,单层细胞会自发塌陷并翻转极性(即腺泡自行转动的位置)内向外)当诱导变得更具收缩性时。最终外翻状态与需要顶端表面外部暴露的类器官应用相关,并且它也类似于癌症中的腺泡腺异常。从这项研究中获得的知识对于组织发育的基本理解以及培养的类器官结构的控制非常有价值。因此,该项目对促进人类健康具有广泛的潜在影响,因为研究结果将与建立组织组织和发育的机械原理直接相关。它还与用于药物测试、再生医学或疾病模型的类器官的生物制造高度相关。该项目将支持对不同研究生和本科生的培训和指导,包括佛罗里达大学数字艺术项目的学生,他们将根据腺泡动力学的三维成像渲染动画,以用于推广和教育目的。 该项目的目标是利用实验和计算方法的协同组合来了解腺泡稳定性和外翻的生物力学。第一个目标是确定导致腺泡机械平衡的细胞应力的贡献,测试表面张力和/或管腔压力被调节以将腺泡维持在稳定和不稳定平衡状态之间的临界点的假设。基于三维顶点的数学模型将用于模拟单层中相互作用的细胞群,考虑顶端和基底细胞表面的表面张力和曲率以及细胞与细胞的界面张力。该模型还将解释细胞-细胞和细胞-基质粘附在表面力和界面能中的作用。这些参数将受到实验干扰,同时通过高分辨率共焦显微镜跟踪腺泡表面的 3D 形态。第二个目标是了解腺泡如何从平衡状态受到扰动并被驱动收缩并外翻至外翻极性状态,检验顶端和基底表面张力之间的差异是外翻的机械驱动力的假设。将使用考虑细胞收缩力和粘性力的动态顶点/有限元模型来模拟外翻过程,并将通过化学扰动(例如肌动球蛋白激活、ECM 粘附抑制)和激光烧蚀触发外翻来进行实验测试。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Dickinson其他文献

Spotlight-mode synthetic aperture radar processing for high-resolution lunar mapping
用于高分辨率月球测绘的聚光模式合成孔径雷达处理
  • DOI:
    10.1109/radar.2010.5494426
  • 发表时间:
    2010-05-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Harcke;L. Weintraub;S. Yun;Richard Dickinson;E. Gurrola;S. Hensley;N. Marechal
  • 通讯作者:
    N. Marechal
Methionine catabolism in Saccharomyces cerevisiae.
酿酒酵母中的蛋氨酸分解代谢。
  • DOI:
    10.1111/j.1567-1356.2005.00005.x
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Philippe Perpè Te;Olivier Duthoit;S. De Maeyer;Louise Imray;Andrew I. Lawton;Konstantinos E Stavropoulos;V. Gitonga;M. Hewlins;J Richard Dickinson;Richard Dickinson
  • 通讯作者:
    Richard Dickinson
The metabolism and molecular physiology of Saccharomyces cerevisiae
酿酒酵母的代谢和分子生理学
  • DOI:
    10.1201/9781482295405
  • 发表时间:
    1998-12-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Dickinson;M. Schweizer;Alena Pichova;Richard Dickinson
  • 通讯作者:
    Richard Dickinson
Lunar topographic mapping using a new high resolution mode for the GSSR radar
使用 GSSR 雷达的新高分辨率模式进行月球地形测绘
  • DOI:
    10.1109/radar.2010.5494575
  • 发表时间:
    2010-05-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Hensley;E. Gurrola;L. Harcke;M. Slade;K. Quirk;M. Srinivasan;Clement G. Lee;S. Yun;J. Jao;B. Wilson;E. D. De Jong;N. Marechal;L. Weintraub;Richard Dickinson;R. Bloom;G. Karamyan;A. Lilje
  • 通讯作者:
    A. Lilje
'Fusel' alcohols induce hyphal-like extensions and pseudohyphal formation in yeasts.
“杂醇”醇在酵母中诱导菌丝样延伸和假菌丝形成。
  • DOI:
    10.1099/13500872-142-6-1391
  • 发表时间:
    1996-06-01
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    J.;Richard Dickinson
  • 通讯作者:
    Richard Dickinson

Richard Dickinson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Dickinson', 18)}}的其他基金

MRI: Development of Instrumentation for Direct Measurement of Forces Between a Colloidal Particle and a Surface
MRI:开发直接测量胶体颗粒与表面之间力的仪器
  • 批准号:
    9977459
  • 财政年份:
    1999
  • 资助金额:
    $ 36.94万
  • 项目类别:
    Standard Grant
CAREER: Direct Measurement and Mathematical Analysis of Receptor-Mediated Bacterial Attachment on Biomaterial Surfaces
职业:生物材料表面受体介导的细菌附着的直接测量和数学分析
  • 批准号:
    9704236
  • 财政年份:
    1997
  • 资助金额:
    $ 36.94万
  • 项目类别:
    Continuing Grant
NSF-NATO Postdoctoral Fellow
NSF-北约博士后研究员
  • 批准号:
    9255318
  • 财政年份:
    1993
  • 资助金额:
    $ 36.94万
  • 项目类别:
    Fellowship Award

相似国自然基金

基于OpenSIM姿势仿真生物力学的腰背部肌肉疲劳预警及干预研究
  • 批准号:
    82373549
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
渐进式负荷训练对疲劳诱导的跟腱生物力学机制研究
  • 批准号:
    12302416
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于生物力学改造的新型NKG2D CAR NK在肝细胞癌治疗中的作用及机制研究
  • 批准号:
    32301035
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
PEKK/HA及仿生骨小梁对3D打印可活动颈椎的成骨性能和生物力学研究
  • 批准号:
    82372417
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
青少年颈痛颈部筋出槽骨错缝与手法调治的生物力学机制研究
  • 批准号:
    82374467
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Evolution of the hyoid, pharynx and swallowing biomechanics in mammals
合作研究:哺乳动物舌骨、咽部和吞咽生物力学的进化
  • 批准号:
    2315501
  • 财政年份:
    2023
  • 资助金额:
    $ 36.94万
  • 项目类别:
    Standard Grant
2023 Collagen Gordon Research Conference and Seminar
2023年胶原蛋白戈登研究会议暨研讨会
  • 批准号:
    10675849
  • 财政年份:
    2023
  • 资助金额:
    $ 36.94万
  • 项目类别:
AddBiomechanics: Automatic Processing and Sharing of Human Movement Data
AddBiomechanics:人体运动数据的自动处理和共享
  • 批准号:
    10743411
  • 财政年份:
    2023
  • 资助金额:
    $ 36.94万
  • 项目类别:
Collaborative Research: Biomechanics of Epithelial Tissue Homeostasis, Collapse, and Eversion
合作研究:上皮组织稳态、塌陷和外翻的生物力学
  • 批准号:
    2226157
  • 财政年份:
    2023
  • 资助金额:
    $ 36.94万
  • 项目类别:
    Standard Grant
Collaborative Research: Evolution of the hyoid, pharynx and swallowing biomechanics in mammals
合作研究:哺乳动物舌骨、咽部和吞咽生物力学的进化
  • 批准号:
    2315502
  • 财政年份:
    2023
  • 资助金额:
    $ 36.94万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了