Collaborative Research: Twist Control of Correlated Physics in Two Dimensions

合作研究:二维相关物理的扭转控制

基本信息

  • 批准号:
    2226098
  • 负责人:
  • 金额:
    $ 35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-15 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Nontechnical DescriptionInnovations in materials science drive the creation of technologies that fundamentally alter how societies function. For years there has been excitement around the possibility of computers based on the principles of quantum mechanics. This dream remains unrealized both due to the lack of tunable quantum behaviors in materials and a pipeline for training a quantum-literate workforce. The main research objective of this project is to accelerate the production of next-generation technologies by achieving unprecedented control over the physics in quantum materials. The project will specifically investigate atomically thin materials that individually have strong electronic interactions to understand how these interactions may be manipulated through layer engineering. This new ability to design quantum states by twisting layers can hasten the creation of memory and computing technologies that are superior in performance and energy efficiency to the status quo. Twist angle physics in quantum materials also provides new insight into how interactions between electrons can lead to unexpected behaviors. The education goal of this project is to build a quantum-literate workforce by teaching high school and undergraduate students about possible career paths in quantum technology as well as how to follow these paths. Quantum workforce development is carried out through cross-institution, academia-industry events that include: 1) a ‘Careers in Quantum’ event where students can directly interact with industry experts, 2) outreach events at the Principal Investigators’ institutions, and 3) a middle school science camp. These activities are poised to make a long-standing impact in the preparation of students for exciting careers in an increasingly quantum high-tech industry.Technical DescriptionThe objective of this project is to discover the role of interlayer interactions in layered quantum materials through the exploration of twisted heterostructures of tantalum disulfide. Existing studies of layered quantum materials demonstrate connections between electronic ground state and layer alignment, but these are limited to a small set of naturally occurring stacking configurations and wrought with contradictions. By leveraging twist-tunable heterostructures and a range of characterization and modeling that spans nanoscale to mesoscale physics, this project systematically explores strongly correlated physics in tantalum disulfide to uncover the total phase space detailing the interplay of Mott physics, charge density waves, magnetism, and metallic states. This research is enabled through a partnership between the University of New Hampshire and George Mason University and with the Quantum Material Press at Brookhaven National Laboratory. The central research activities are: 1) creating the first twisted heterostructures comprised of strongly correlated materials; 2) elucidating the twist-angle structure-property relationships in tantalum disulfide through the correlation of nanoscale scanning tunneling microscopy and mesoscale magneto-Raman spectroscopy; and 3) discovering the impact of aperiodicity in a new class of twisted quantum quasicrystals. Experimental results from these efforts can inform the creation of theoretical models of twist physics by collaborators at the Naval Research Laboratory, leading to a more general understanding of quantum emergence in layered solids. The structure-property relationships established in this work provide a set of guiding principles for designer quantum behaviors in twisted heterostructures, such as switchable ground states, through the judicious choice of 2D material and layer orientation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述材料科学的创新推动了从根本上改变社会运作方式的技术的创造,多年来,人们一直对基于量子力学原理的计算机的可能性感到兴奋,但由于缺乏可调节的量子行为,这一梦想仍未实现。该项目的主要研究目标是通过实现对量子材料物理的前所未有的控制来加速下一代技术的生产。具有很强的电子相互作用了解如何通过层工程来操纵这些相互作用。这种通过扭曲层来设计量子态的新能力可以加速存储器和计算技术的创建,这些技术在性能和能源效率方面优于量子材料中的现状扭曲角物理。还提供了关于电子之间的相互作用如何导致意想不到的行为的新见解。该项目的教育目标是通过向高中生和本科生传授量子技术中可能的职业道路以及如何遵循这些道路来建立一支具有量子素养的劳动力队伍。进行量子劳动力开发。通过跨机构、学术界和行业的活动,包括:1)“量子职业”活动,学生可以直接与行业专家互动,2)在首席研究员机构的外展活动,以及 3)中学科学营。这些活动将为学生在日益发展的量子高科技行业中从事令人兴奋的职业做好准备产生长期影响。技术描述该项目的目标是通过探索层状量子材料中层间相互作用的作用。二硫化钽的扭曲异质结构的现有研究证明了电子基态和层排列之间的联系,但这些仅限于一小部分自然发生的堆叠配置,并且通过利用扭曲可调异质结构和一系列矛盾来实现。跨越纳米尺度到介观尺度物理的表征和建模,该项目系统地探索二硫化钽中的强相关物理,以揭示总相空间,详细描述莫特物理、电荷密度波、这项研究是通过新罕布什尔大学和乔治梅森大学以及布鲁克海文国家实验室的量子材料出版社的合作实现的,主要研究活动是:1)创建第一个由 2 组成的扭曲异质结构。 ) 通过纳米级扫描隧道显微镜和介观磁拉曼光谱的关联阐明二硫化钽中的扭转角结构-性质关系;3) 发现非周期性对新型扭曲量子准晶体的影响这些努力的实验结果可以为海军研究实验室的合作者创建扭曲物理的理论模型提供信息,从而对层状固体中的量子涌现特性有更普遍的理解。这项工作中建立的关系通过明智地选择 2D 材料和层方向,为设计者在扭曲异质结构(例如可切换基态)中的量子行为提供了一套指导原则。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shawna Hollen其他文献

Shawna Hollen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shawna Hollen', 18)}}的其他基金

Revealing the role of inhomogeneities and disorder in 2D materials: Correlating transport with spatial and electronic topography
揭示二维材料中不均匀性和无序性的作用:将传输与空间和电子拓扑关联起来
  • 批准号:
    1709029
  • 财政年份:
    2017
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant

相似国自然基金

MDS克隆细胞中TWIST1影响BMMSC成脂/成骨分化重编程的机制研究
  • 批准号:
    82370147
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
TWIST1介导的ITGBL1+肿瘤相关成纤维细胞转化加速结肠癌动态演化进程机制及其预防干预研究
  • 批准号:
    82373112
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于多尺度力学模型的捻卷型碳基复合纤维人工肌肉热力耦合机制研究
  • 批准号:
    12372117
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
TWIST1介导FGFR2+成纤维细胞向FAP+成纤维细胞转化在克罗恩病肠纤维化发生发展中的作用研究
  • 批准号:
    82370549
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
压力通过硬脑膜外泌体miR-25/颅缝间充质干细胞Twist1通路对颅骨发育和损伤修复的调节作用及机制研究
  • 批准号:
    82360188
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Collaborative Research: Twist Control of Correlated Physics in Two Dimensions
合作研究:二维相关物理的扭转控制
  • 批准号:
    2226097
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: A New Twist on Muscle Contraction
合作研究:肌肉收缩的新转折
  • 批准号:
    1731917
  • 财政年份:
    2016
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
Collaborative Research: A New Twist on Muscle Contraction
合作研究:肌肉收缩的新转折
  • 批准号:
    1456150
  • 财政年份:
    2015
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
Collaborative Research: A New Twist on Muscle Contraction
合作研究:肌肉收缩的新转折
  • 批准号:
    1456623
  • 财政年份:
    2015
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
Collaborative Research: A New Twist on Muscle Contraction
合作研究:肌肉收缩的新转折
  • 批准号:
    1456868
  • 财政年份:
    2015
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了