Collaborative Research: Self-organization and transitions in anisotropic turbulence

合作研究:各向异性湍流的自组织和转变

基本信息

  • 批准号:
    2308338
  • 负责人:
  • 金额:
    $ 18.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

The impact of rotation and thermal driving on stellar and planetary bodies is clearly visible in far-field optical observations. Such observations reveal the presence of differentially rotating fluid atmospheres with embedded features in the form of large-scale eddies and jets that greatly influence the climate on the celestial body. On Earth the impact of the high latitude jet stream on weather and the destructive impact of hurricanes due to climate change is evident. Within the Jovian atmosphere, the recent discovery by the Juno mission of polar vortices illuminates the longevity of vortical structures. Theory, experimentation, and numerical simulations strongly suggest that the generation of large-scale jets and vortices is common in fluid turbulence within thin layers like the Earth’s atmosphere and on rapidly rotating celestial bodies such as Jupiter. Focusing on these paradigms, this project is dedicated to elucidating the basic mechanism behind the formation of such large-scale structures from small-scale turbulent fluctuations and its disruption via the generation of isolated, weakly-interacting, mesoscale shielded vortices, and to extending this understanding to more realistic models that introduce higher level physics such as the effects of water vapor and internal heating via latent heat release. This understanding will inform more detailed studies such as those based on realistic Global Ocean and Atmospheric Circulation Models and offers hope for understanding the conditions favoring the formation of both large-scale structures and of the smaller-scale shielded vortices. The modeling strategy taken provides a foundation upon which greater discipline-specific complexity can be built. The project will support and train one graduate student and one postdoctoral researcher in the physical understanding of energy transfer between scales in systems of geophysical relevance, asymptotic and other modeling techniques, as well as direct numerical simulations of rapidly rotating fluid layers, appropriate for planetary-scale phenomena on and within the Earth.The aim of this project is to classify different regimes of instability-driven turbulence in two dimensions (2D) as a function of the energy input and dissipation parameters, and to explore how these states evolve when three-dimensional (3D) fluctuations become increasingly important as the height of the turbulent layer increases. Particular emphasis will be placed on the recently discovered regime of shielded mesoscale vortices whose generation may disrupt the inverse energy cascade familiar from 2D turbulence with random stirring. Properties of the resulting chiral mesoscale vortex gas will be studied as a function of the layer height, as will the transition to a vortex crystal that takes place at high vortex density in 2D. The Reynolds number will be varied systematically to bridge the gap between these phenomena and related states in bacterial suspensions at low Reynolds numbers. The possibility of an analogous state in rapidly rotating 3D turbulence will be investigated in detail using a new reformulation of the Navier-Stokes fluid equations, extending direct numerical simulations to smaller Rossby numbers, together with a theoretical analysis dissecting the amplitude-phase relationships between large-scale structures and small-scale turbulence.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在远场观察中,旋转和热驱动对恒星和行星的影响显然是可见的在Jovian气氛中具有破坏性的有影响力的影响力身份,极地涡流的朱诺使命揭示了涡流结构的寿命,这强烈表明,大规模的喷气机和涡流很常见。诸如大气和旋转的天体之类的湍流枯萎,例如木星。扩展到引入更高级别的物理学的途中,例如基于现实的全球海洋和大气模型的水蒸气和内部热量的影响。在较小的屏蔽漩涡中,采用的建模策略可以建立IC复杂性的基础。 Ting Fluid层,适合行星尺度,在Earther中,在二维(2D)中驱动的湍流是能量和耗散参数的函数。增加。这些现象与雷诺数低的细菌悬浮液中的相关状态之间的差距将使用Navier-Stokes流体方程数的新改革进行详细研究。大规模结构与规模之间的阶段关系。该奖项反映了NSF'STUEND值得使用Toundation的知识分子CTS审查标准进行Suthy评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Keith Julien其他文献

The solar dynamo begins near the surface
太阳能发电机从地表附近开始
  • DOI:
    10.1038/s41586-024-07315-1
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    G. Vasil;D. Lecoanet;K. Augustson;K. Burns;J. Oishi;Benjamin P. Brown;N. Brummell;Keith Julien
  • 通讯作者:
    Keith Julien
From a vortex gas to a vortex crystal in instability-driven two-dimensional turbulence
不稳定驱动的二维湍流中从涡旋气体到涡旋晶体
  • DOI:
    10.1017/jfm.2024.162
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Adrian van Kan;B. Favier;Keith Julien;Edgar Knobloch
  • 通讯作者:
    Edgar Knobloch
Low-frequency Internal Gravity Waves Are Pseudo-incompressible
低频内重力波是伪不可压缩的
  • DOI:
    10.3847/1538-4357/ad0967
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Hindman;Keith Julien
  • 通讯作者:
    Keith Julien

Keith Julien的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Keith Julien', 18)}}的其他基金

Collaborative Research: Explorations of Salt Finger Convection in the Extreme Oceanic Parameter Regime: An Asymptotic Modeling Approach.
合作研究:极端海洋参数体系中盐指对流的探索:渐近建模方法。
  • 批准号:
    2023499
  • 财政年份:
    2020
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Inverse Cascade Pathways in Turbulent Convection - The Impact of Spatial Anisotropy
合作研究:湍流对流中的逆级联路径 - 空间各向异性的影响
  • 批准号:
    2009319
  • 财政年份:
    2020
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Formation, properties and evolution of protoplanetary vortices: Multiscale investigations of baroclinic instability
合作研究:原行星涡旋的形成、性质和演化:斜压不稳定性的多尺度研究
  • 批准号:
    1317666
  • 财政年份:
    2013
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant
Next-Generation Modeling of the Geodynamo: Development of the First Multi-Scale Dynamo Model
下一代地球发电机建模:第一个多尺度发电机模型的开发
  • 批准号:
    1320991
  • 财政年份:
    2013
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant
CSEDI Collaborative Research: Next Generation Modeling of Core Turbulence via Combined Laboratory, Numerical and Theoretical Models
CSEDI 协作研究:通过实验室、数值和理论组合模型对核心湍流进行下一代建模
  • 批准号:
    1067944
  • 财政年份:
    2011
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Models of Balanced Multiscale Ocean Physics for Simulation and Parameterization
FRG:协作研究:用于模拟和参数化的平衡多尺度海洋物理模型
  • 批准号:
    0855010
  • 财政年份:
    2009
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant
CMG TRAINING: Summer School on Geophysical Turbulent Phenomena
CMG 培训:地球物理湍流现象暑期学校
  • 批准号:
    0724859
  • 财政年份:
    2007
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Rotationally Constrained Convection
合作研究:旋转约束对流
  • 批准号:
    0137347
  • 财政年份:
    2002
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant

相似国自然基金

“为自己的健康负责”——基于当责视角的健康管理APP对用户行为的作用机制研究
  • 批准号:
    72302199
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Self-DNA介导的CD4+组织驻留记忆T细胞(Trm)分化异常在狼疮肾炎发病中的作用及机制研究
  • 批准号:
    82371813
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于受体识别和转运整合的self-DNA诱导采后桃果实抗病反应的机理研究
  • 批准号:
    32302161
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于广义测量的多体量子态self-test的实验研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
新型代谢基因特征簇作为乳腺癌干细胞生物标志物及其靶向的研究
  • 批准号:
    31900515
  • 批准年份:
    2019
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
  • 批准号:
    2329908
  • 财政年份:
    2024
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
  • 批准号:
    2329909
  • 财政年份:
    2024
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant
DULCE (Diabetes InqUiry Through a Learning Collaborative Experience)
DULCE(通过学习协作体验进行糖尿病查询)
  • 批准号:
    10558119
  • 财政年份:
    2023
  • 资助金额:
    $ 18.7万
  • 项目类别:
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
  • 批准号:
    2323470
  • 财政年份:
    2023
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Self-powered Electrochemical Actuators toward Untethered Soft Mobile Robots
合作研究:用于无束缚软移动机器人的自供电电化学执行器
  • 批准号:
    2329674
  • 财政年份:
    2023
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了