Collaborative Research: Self-organization and transitions in anisotropic turbulence

合作研究:各向异性湍流的自组织和转变

基本信息

  • 批准号:
    2308338
  • 负责人:
  • 金额:
    $ 18.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

The impact of rotation and thermal driving on stellar and planetary bodies is clearly visible in far-field optical observations. Such observations reveal the presence of differentially rotating fluid atmospheres with embedded features in the form of large-scale eddies and jets that greatly influence the climate on the celestial body. On Earth the impact of the high latitude jet stream on weather and the destructive impact of hurricanes due to climate change is evident. Within the Jovian atmosphere, the recent discovery by the Juno mission of polar vortices illuminates the longevity of vortical structures. Theory, experimentation, and numerical simulations strongly suggest that the generation of large-scale jets and vortices is common in fluid turbulence within thin layers like the Earth’s atmosphere and on rapidly rotating celestial bodies such as Jupiter. Focusing on these paradigms, this project is dedicated to elucidating the basic mechanism behind the formation of such large-scale structures from small-scale turbulent fluctuations and its disruption via the generation of isolated, weakly-interacting, mesoscale shielded vortices, and to extending this understanding to more realistic models that introduce higher level physics such as the effects of water vapor and internal heating via latent heat release. This understanding will inform more detailed studies such as those based on realistic Global Ocean and Atmospheric Circulation Models and offers hope for understanding the conditions favoring the formation of both large-scale structures and of the smaller-scale shielded vortices. The modeling strategy taken provides a foundation upon which greater discipline-specific complexity can be built. The project will support and train one graduate student and one postdoctoral researcher in the physical understanding of energy transfer between scales in systems of geophysical relevance, asymptotic and other modeling techniques, as well as direct numerical simulations of rapidly rotating fluid layers, appropriate for planetary-scale phenomena on and within the Earth.The aim of this project is to classify different regimes of instability-driven turbulence in two dimensions (2D) as a function of the energy input and dissipation parameters, and to explore how these states evolve when three-dimensional (3D) fluctuations become increasingly important as the height of the turbulent layer increases. Particular emphasis will be placed on the recently discovered regime of shielded mesoscale vortices whose generation may disrupt the inverse energy cascade familiar from 2D turbulence with random stirring. Properties of the resulting chiral mesoscale vortex gas will be studied as a function of the layer height, as will the transition to a vortex crystal that takes place at high vortex density in 2D. The Reynolds number will be varied systematically to bridge the gap between these phenomena and related states in bacterial suspensions at low Reynolds numbers. The possibility of an analogous state in rapidly rotating 3D turbulence will be investigated in detail using a new reformulation of the Navier-Stokes fluid equations, extending direct numerical simulations to smaller Rossby numbers, together with a theoretical analysis dissecting the amplitude-phase relationships between large-scale structures and small-scale turbulence.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在远场光学观测中,旋转和热驱动对恒星和行星体的影响清晰可见。这样的观察结果揭示了具有不同旋转的流体气氛,具有嵌入式特征的大规模涡形和喷气式的形式,这些特征很大程度上影响了气候对天体的影响。在地球上,高纬度喷气流对天气以及由于气候变化引起的飓风的破坏性影响。在Jovian的气氛中,朱诺(Juno)的最近发现极地涡流的发现阐明了涡流结构的寿命。理论,实验和数值模拟强烈表明,大规模喷射和涡流的产生在薄层(例如地球大气层)和迅速旋转的天体(如木星)中很常见。该项目着重于这些范式,致力于阐明从小规模的湍流波动形成这种大规模结构的基本机制,并通过产生孤立的,弱相互关联的,中尺度上的中尺度上的涡流涡流,以及将这种理解范围扩展到更现实的热量中,从而通过较高的级别的物理学来延伸效应效果和效果。这种理解将为更详细的研究提供信息,例如基于现实的全球海洋和大气循环模型,并为了解有利于形成大型结构和较小规模屏蔽涡流形成的条件提供了希望。建模策略为基础提供了一个基础,可以建立更大的纪律特定复杂性。该项目将支持并培训一名研究生和一名博士后研究人员对地球物理相关性,不对称和其他建模技术的量表之间的能量转移的物理理解,以及迅速旋转流体层的直接数值,适用于地球上和两次diffife the Instancie the Instancie the Instancime and the Instancime and drowd drard turn the Instancime and the Instancime and the Instable(与Instable)的构图(能量输入和耗散参数的函数,并探讨当三维(3D)波动随着湍流层的高度增加而变得越来越重要时,这些状态如何发展。特别重点将放在最近发现的屏蔽中尺度涡旋的方向上,其产生可能会破坏因2D湍流而随机搅拌而熟悉的反向能量级联反应。所产生的手性中尺度涡流气体的性能将作为层高度的函数进行研究,以及在2D中高涡流密度以高涡流密度发生的涡流晶体的函数。雷诺数将系统地变化,以弥合雷诺数低的细菌悬浮液中这些现象和相关状态之间的差距。快速旋转3D湍流中类似状态的可能性将通过对Navier-Stokers流体方程式进行新的改革进行详细研究,将直接数值模拟扩展到较小的Rossby数字,并通过理论分析解析了通过对大规模结构和小规模的湍流之间的支持,将放大器 - 相位的关系解剖,并在较小的湍流中进行了支持。基金会的智力优点和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Keith Julien其他文献

From a vortex gas to a vortex crystal in instability-driven two-dimensional turbulence
不稳定驱动的二维湍流中从涡旋气体到涡旋晶体
  • DOI:
    10.1017/jfm.2024.162
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Adrian van Kan;B. Favier;Keith Julien;Edgar Knobloch
  • 通讯作者:
    Edgar Knobloch
Low-frequency Internal Gravity Waves Are Pseudo-incompressible
低频内重力波是伪不可压缩的
  • DOI:
    10.3847/1538-4357/ad0967
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Hindman;Keith Julien
  • 通讯作者:
    Keith Julien
Linearly implicit methods for nonlinear PDEs with linear dispersion and dissipation
  • DOI:
    10.1016/j.jcp.2011.02.007
  • 发表时间:
    2011-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ian Grooms;Keith Julien
  • 通讯作者:
    Keith Julien
The solar dynamo begins near the surface
太阳能发电机从地表附近开始
  • DOI:
    10.1038/s41586-024-07315-1
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    G. Vasil;D. Lecoanet;K. Augustson;K. Burns;J. Oishi;Benjamin P. Brown;N. Brummell;Keith Julien
  • 通讯作者:
    Keith Julien
A new method for fast transforms in parity-mixed PDEs: Part I. Numerical techniques and analysis
  • DOI:
    10.1016/j.jcp.2008.04.020
  • 发表时间:
    2008-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Geoffrey M. Vasil;Nicholas H. Brummell;Keith Julien
  • 通讯作者:
    Keith Julien

Keith Julien的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Keith Julien', 18)}}的其他基金

Collaborative Research: Explorations of Salt Finger Convection in the Extreme Oceanic Parameter Regime: An Asymptotic Modeling Approach.
合作研究:极端海洋参数体系中盐指对流的探索:渐近建模方法。
  • 批准号:
    2023499
  • 财政年份:
    2020
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Inverse Cascade Pathways in Turbulent Convection - The Impact of Spatial Anisotropy
合作研究:湍流对流中的逆级联路径 - 空间各向异性的影响
  • 批准号:
    2009319
  • 财政年份:
    2020
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Formation, properties and evolution of protoplanetary vortices: Multiscale investigations of baroclinic instability
合作研究:原行星涡旋的形成、性质和演化:斜压不稳定性的多尺度研究
  • 批准号:
    1317666
  • 财政年份:
    2013
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant
Next-Generation Modeling of the Geodynamo: Development of the First Multi-Scale Dynamo Model
下一代地球发电机建模:第一个多尺度发电机模型的开发
  • 批准号:
    1320991
  • 财政年份:
    2013
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant
CSEDI Collaborative Research: Next Generation Modeling of Core Turbulence via Combined Laboratory, Numerical and Theoretical Models
CSEDI 协作研究:通过实验室、数值和理论组合模型对核心湍流进行下一代建模
  • 批准号:
    1067944
  • 财政年份:
    2011
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Models of Balanced Multiscale Ocean Physics for Simulation and Parameterization
FRG:协作研究:用于模拟和参数化的平衡多尺度海洋物理模型
  • 批准号:
    0855010
  • 财政年份:
    2009
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant
CMG TRAINING: Summer School on Geophysical Turbulent Phenomena
CMG 培训:地球物理湍流现象暑期学校
  • 批准号:
    0724859
  • 财政年份:
    2007
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Rotationally Constrained Convection
合作研究:旋转约束对流
  • 批准号:
    0137347
  • 财政年份:
    2002
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant

相似国自然基金

Self-DNA介导的CD4+组织驻留记忆T细胞(Trm)分化异常在狼疮肾炎发病中的作用及机制研究
  • 批准号:
    82371813
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
“为自己的健康负责”——基于当责视角的健康管理APP对用户行为的作用机制研究
  • 批准号:
    72302199
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于受体识别和转运整合的self-DNA诱导采后桃果实抗病反应的机理研究
  • 批准号:
    32302161
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于广义测量的多体量子态self-test的实验研究
  • 批准号:
    12104186
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
基于广义测量的多体量子态self-test的实验研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
  • 批准号:
    2329908
  • 财政年份:
    2024
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
  • 批准号:
    2329909
  • 财政年份:
    2024
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant
DULCE (Diabetes InqUiry Through a Learning Collaborative Experience)
DULCE(通过学习协作体验进行糖尿病查询)
  • 批准号:
    10558119
  • 财政年份:
    2023
  • 资助金额:
    $ 18.7万
  • 项目类别:
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
  • 批准号:
    2323470
  • 财政年份:
    2023
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Self-powered Electrochemical Actuators toward Untethered Soft Mobile Robots
合作研究:用于无束缚软移动机器人的自供电电化学执行器
  • 批准号:
    2329674
  • 财政年份:
    2023
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了