Collaborative Research: The interaction of surfaces structured at the nanometer scale with the cells in the physiological environment
合作研究:纳米尺度结构的表面与生理环境中细胞的相互作用
基本信息
- 批准号:2224902
- 负责人:
- 金额:$ 29.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-15 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This is a collaborative project between the University of Texas at El Paso and Baylor College of Medicine. The objective of the collaborative research project is to understand how nanomaterials impact cellular activities in comparison to larger materials. In this regard, the PIs will investigate the influence of physical and chemical factors of nanomaterials in terms of adhesion and spread of cells and synthesis of proteins. The research team proposes that the nanomaterial surface has high surface energy, which is responsible for greater attachment and growth of cells and enhanced formation of different proteins. The understanding of physical and chemical interactions between nanomaterials and cells will promote nanotechnology in the field of medical implants. An educational development plan in nanoscience will be developed by the research team to promote training, education and learning opportunities for students at the University of Texas at El Paso and Baylor College of Medicine with a focus on underrepresented students. In addition, high school students and teachers working together with graduates and undergraduates will acquire knowledge of nanoscience and its application to medical implants from the viewpoint of improvements in the quality of life.The main objective of the research project is to acquire a mechanistic understanding of the favorable modulation of cellular activity on a nanograined (NG) surface in relation to coarse-grained (CG) counterpart. The PIs will test the central hypothesis that “the relative influence of physical and chemical attributes of nanoscale surface compared to the microscale counterpart favorably alters the mechanosensitivity of the cytoskeleton. To test this hypothesis, the PIs are planning three specific aims. In the first aim the PIs are planning to uncover the mechanisms that will explain how grain boundary energy and surface energy induced by the nanoscale surface modulate cell adhesion and biological functionality. In the second aim, the PIs plan to test the hypothesis that altered electronic properties of the nanoscale high grain boundary energy induced nano-grained surface is the causal mechanism responsible for mediating high cell adhesion. In the third aim, the PIs will test the hypothesis that mechanosensing of the cytoskeleton is a key mechanism that modulates the relationship between the adhesive (attractive) force of nanoscale nano-grained surface to the adhesion strength of attached cells. The research project will have the following outcomes: (i) uncover the mechanism that will explain how nanoscale structure induces changes in surface chemistry, surface energy and electron work functions, impacting cellular functionality; (ii) elucidate the mechanism that includes measurable changes in the grain boundary state/energy induced by the nanoscale structure in relation to the microcrystalline surface and how such mechanism would modulate cell adhesion and biological functionality; (iii) unravel the mechanism that links the relationship between high density of grain boundaries with high grain boundary energy to the electronic properties at the nanoscale surface; (iv) uncover the relationship between the adhesive (attractive) force of the nanoscale surface to the electronic properties of the surface and provide fundamental understanding of how such mechanisms would regulate the adhesion of cells. The broader impact of the research project lies in the potential to elucidate mechanisms underlying cell-substrate interactions which could potentially enable design of engineered surfaces with desired physical and chemical attributes leading to desired biological responses. Other key aspects of broader impact of this research include advancing the understanding of cell-nanoscale surface interactions. This could potentially facilitate the fabrication of nanoscale patterning of substrates and the development of innovative nanotechnology devices for applications in fields such as biological micro-electromechanical devices and microfluidics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这是德克萨斯大学埃尔帕索分校和贝勒医学院之间的合作项目,该合作研究项目的目标是了解纳米材料与较大材料相比如何影响细胞活动。研究小组提出,纳米材料表面具有高表面能,可以促进细胞的附着和生长,并增强不同蛋白质的形成。对物理和研究小组将制定一项纳米科学教育发展计划,以促进德克萨斯大学埃尔帕索分校和贝勒学院学生的培训、教育和学习机会。此外,高中生和教师与研究生和本科生一起工作,将从改善生活质量的角度获得纳米科学及其在医疗植入物中的应用。研究项目是为了获得对纳米颗粒 (NG) 表面相对于粗颗粒 (CG) 表面的细胞活动有利调节的机械理解 PI 将检验中心假设,即“纳米颗粒表面的物理和化学属性与粗颗粒表面相比的相对影响”。微尺度对应物有利地改变了细胞骨架的机械敏感性为了检验这一假设,PI 正在计划三个具体目标,第一个目标是揭示解释晶界如何发生的机制。纳米级表面诱导的能量和表面能调节细胞粘附和生物功能在第二个目标中,PI 计划检验这样的假设:纳米级高晶界能量诱导的纳米晶粒表面的电子特性的改变是造成细胞粘附和生物功能的因果机制。在第三个目标中,PI 将检验细胞骨架的机械传感是调节纳米级粘附(吸引力)之间关系的关键机制的假设。该研究项目将产生以下成果:(i)揭示纳米级结构如何引起表面化学、表面能和电子功函数变化,从而影响细胞功能的机制; (ii) 阐明与微晶表面相关的纳米级结构引起的晶界状态/能量的可测量变化的机制,以及这种机制如何调节细胞粘附和生物功能;将高晶界密度和高晶界能量与纳米级表面的电子特性联系起来的机制;(iv)揭示纳米级表面的粘附(吸引力)力与表面的电子特性之间的关系;并提供对这些机制如何调节细胞粘附的基本理解,该研究项目的更广泛影响在于阐明细胞与基质相互作用的潜在机制,这可能使设计具有所需物理和化学属性的工程表面成为可能。其他关键方面。这项研究的更广泛影响包括增进对细胞纳米级表面相互作用的理解,这可能会促进基板纳米级图案的制造以及生物微机电设备和微流体等领域应用的创新纳米技术设备的开发。 NSF 的法定使命并通过评估被认为值得支持,这反映了使用基金会的智力优点和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aladin Boriek其他文献
Aladin Boriek的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aladin Boriek', 18)}}的其他基金
Collaborative Research: Mathematical Modeling of Respiratory Muscles
合作研究:呼吸肌的数学建模
- 批准号:
2151968 - 财政年份:2022
- 资助金额:
$ 29.76万 - 项目类别:
Standard Grant
EAGER: Exploratory Role of the Cytoskeleton in Anisotropic Regulation of Micrornas in Skeletal Muscles
EAGER:细胞骨架在骨骼肌微RNA各向异性调节中的探索性作用
- 批准号:
1714478 - 财政年份:2017
- 资助金额:
$ 29.76万 - 项目类别:
Standard Grant
EAGER: Exploratory role of microRNA-induced dysregulation of FOXO and Sirt1 in aging muscles
EAGER:microRNA 诱导的 FOXO 和 Sirt1 失调在衰老肌肉中的探索作用
- 批准号:
1451619 - 财政年份:2015
- 资助金额:
$ 29.76万 - 项目类别:
Standard Grant
EAGER: Exploratory and novel mechanisms of cytoskeleton-induced regulation of Sirt1 in smooth muscles
EAGER:平滑肌中细胞骨架诱导的 Sirt1 调节的探索性新机制
- 批准号:
1156307 - 财政年份:2012
- 资助金额:
$ 29.76万 - 项目类别:
Standard Grant
Muscle anisotropy of the respiratory pump
呼吸泵的肌肉各向异性
- 批准号:
0650686 - 财政年份:2007
- 资助金额:
$ 29.76万 - 项目类别:
Standard Grant
相似国自然基金
基于多元原子间相互作用的铝合金基体团簇调控与强化机制研究
- 批准号:52371115
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
GFRα-S100A8/A9-TLR4通路介导胰腺癌细胞与施旺细胞相互作用调控神经炎症促进肿瘤进展的机制研究
- 批准号:82303265
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ADRA2a调控滤泡辅助性T细胞与生发中心B细胞相互作用参与哮喘发病的机制研究
- 批准号:82370025
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于预训练深度生成模型的相互作用蛋白质设计关键技术及应用研究
- 批准号:62306334
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
血蓝蛋白与虾青素相互作用调控南美白对虾红变的分子机制研究
- 批准号:32302012
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: NSFGEO-NERC: Magnetotelluric imaging and geodynamical/geochemical investigations of plume-ridge interaction in the Galapagos
合作研究:NSFGEO-NERC:加拉帕戈斯群岛羽流-山脊相互作用的大地电磁成像和地球动力学/地球化学研究
- 批准号:
2334542 - 财政年份:2024
- 资助金额:
$ 29.76万 - 项目类别:
Continuing Grant
Collaborative Research: NSFGEO-NERC: Magnetotelluric imaging and geodynamical/geochemical investigations of plume-ridge interaction in the Galapagos
合作研究:NSFGEO-NERC:加拉帕戈斯群岛羽流-山脊相互作用的大地电磁成像和地球动力学/地球化学研究
- 批准号:
2334541 - 财政年份:2024
- 资助金额:
$ 29.76万 - 项目类别:
Continuing Grant
Collaborative Research: Interaction-aware Planning and Control for Robotic Navigation in the Crowd
协作研究:人群中机器人导航的交互感知规划和控制
- 批准号:
2423131 - 财政年份:2024
- 资助金额:
$ 29.76万 - 项目类别:
Standard Grant
Collaborative Research: Antarctic Low Cloud Interaction with Natural Aerosol (ALCINA)
合作研究:南极低云与天然气溶胶的相互作用(ALCINA)
- 批准号:
2130204 - 财政年份:2023
- 资助金额:
$ 29.76万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Technology-Assisted Accessible Clothing: Soft Robotic Interaction Technologies and an Assessment Framework for Clothing Accessibility
合作研究:EAGER:技术辅助的无障碍服装:软机器人交互技术和服装无障碍评估框架
- 批准号:
2324342 - 财政年份:2023
- 资助金额:
$ 29.76万 - 项目类别:
Standard Grant