Collaborative Research: FET: Small: Minimum Quantum Circuit Size Problems, Variants, and Applications

合作研究:FET:小型:最小量子电路尺寸问题、变体和应用

基本信息

  • 批准号:
    2224131
  • 负责人:
  • 金额:
    $ 29.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

A central pursuit in modern computing is to find a method as efficient as possible to solve a computational problem. Abstractly, given the truth table of a function, can one decide the minimum size of a boolean circuit that correctly computes the function? The investigation into it, termed the minimum circuit size problem (MCSP), has accompanied the development of theoretical computer science since the beginning. It manifests diverse and sometimes mysterious properties that prove to be fruitful in investigating the foundations of computing. For instance, efficient algorithms for MCSP imply efficient learning algorithms for important tasks as well as breaking public-key cryptography; and on the other hand, MCSP is useful to demonstrate no-go results such as lower bounds on the computational resources necessary to solve a problem. The goal of this project is to advance quantum information processing through the lens of MCSP. The tools and objects studied in this project can have significant applications in quantum information processing and quantum physics. For instance, we might be able to build novel quantum cryptographic protocols, prove quantum resources lower bounds for basic problems, and show the hardness of estimating the wormhole volume by studying quantum versions of MCSP. Furthermore, this project could stimulate further collaboration between computer scientists and physicists. The research component will be supplemented by a concerted education and outreach plan. This will include developing courses in quantum computing and upgrading the theory curriculum in computer science, establishing groups in quantum computing at participating universities, disseminating the findings to a broad audience, and engaging local communities via successful programs (e.g., Saturday Academy that provides internships to Portland high school students), and hosting quantum coding contests across the two universities. They form a vital part of this project to promote greater interest and proficiency in quantum computing. This project aims to investigate the minimum quantum circuit size for computing various objects along three thrusts. 1) A framework for studying minimum quantum circuit size problems on classical and quantum objects, including functions, quantum states, and unitary operators. New tools will be developed to establish their hardness and connections to fundamental problems in quantum information processing. A new landscape of quantum complexity theory will be identified. 2) Under the framework developed in thrust 1, the problems of deciding the minimum size circuit for simulating a quantum system andfor preparing ground states will be further explored. These two problems represent some of the most viable applications of quantum computers, and the new findings here will depict the algorithmic limits of these applications as well as connect them to other basic primitives in quantum computing. 3) More input models will be explored, including succinct classical descriptions and purely quantum inputs (e.g., a quantum state in a register), and the formal treatment will be accompanied by novel applications, including new protocols for classically verifying quantum resources as well as novel quantum pseudorandom primitives. The proposed work in all these thrusts will expand the scope of quantum information processing and the minimum circuit size problem. Moreover, it will provide new approaches to studying basic quantum primitives and bridging computer science and quantum physics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代计算的核心追求是找到一种尽可能有效的方法来解决计算问题。抽象地说,给定函数的真值表,我们可以确定正确计算该函数的布尔电路的最小大小吗?对它的研究被称为最小电路尺寸问题(MCSP),从一开始就伴随着理论计算机科学的发展。它表现出多种有时甚至是神秘的特性,这些特性在研究计算基础方面被证明是富有成效的。例如,MCSP 的高效算法意味着重要任务以及破解公钥密码学的高效学习算法;另一方面,MCSP 可用于演示不可行的结果,例如解决问题所需的计算资源的下限。该项目的目标是通过 MCSP 的视角推进量子信息处理。该项目研究的工具和对象可以在量子信息处理和量子物理学中具有重要的应用。例如,我们也许能够构建新颖的量子密码协议,证明基本问题的量子资源下限,并通过研究 MCSP 的量子版本来展示估计虫洞体积的难度。此外,该项目可以刺激计算机科学家和物理学家之间的进一步合作。研究部分将得到协调一致的教育和推广计划的补充。这将包括开发量子计算课程并升级计算机科学理论课程,在参与大学建立量子计算小组,向广大受众传播研究结果,并通过成功的项目吸引当地社区(例如,周六学院为学生提供实习机会)。波特兰高中生),并在两所大学举办量子编码竞赛。它们是该项目的重要组成部分,旨在提高人们对量子计算的兴趣和熟练程度。该项目旨在研究沿着三个推力计算各种物体的最小量子电路尺寸。 1)研究经典和量子对象上的最小量子电路尺寸问题的框架,包括函数、量子态和酉算子。将开发新工具来确定其硬度以及与量子信息处理中基本问题的联系。量子复杂性理论的新景观将被确定。 2)在推力1开发的框架下,将进一步探讨确定模拟量子系统和准备基态的最小尺寸电路的问题。这两个问题代表了量子计算机的一些最可行的应用,这里的新发现将描述这些应用的算法限制,并将它们与量子计算中的其他基本原语联系起来。 3)将探索更多的输入模型,包括简洁的经典描述和纯量子输入(例如,寄存器中的量子态),形式化处理将伴随新的应用,包括经典验证量子资源的新协议以及新颖的量子伪随机基元。所有这些方面的拟议工作将扩大量子信息处理和最小电路尺寸问题的范围。此外,它将提供研究基本量子基元以及连接计算机科学和量子物理学的新方法。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fang Song其他文献

The Impact of Total Product Purchase Limit on Consumer Purchase Intention in E-business
电子商务中产品总购买限额对消费者购买意愿的影响
Single-Side Fabricated p+Si/Al Thermopile-Based Gas Flow Sensor for IC-Foundry-Compatible, High-Yield, and Low-Cost Volume Manufacturing
单面制造的基于 p Si/Al 热电堆的气体流量传感器,适用于 IC 代工兼容、高产量和低成本批量制造
  • DOI:
    10.1109/ted.2018.2878469
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Dan Xue;Fang Song;Jiachou Wang;Xinxin Li
  • 通讯作者:
    Xinxin Li
Microbiome and Metagenome Analysis Reveals Huanglongbing Affects the Abundance of Citrus Rhizosphere Bacteria Associated with Resistance and Energy Metabolism
微生物组和宏基因组分析揭示黄龙病影响柑橘根际细菌的丰度,与抗性和能量代谢相关
  • DOI:
    10.3390/horticulturae7060151
  • 发表时间:
    2021-06-13
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Hongfei Li;Fang Song;Xiaoxiao Wu;Chongling Deng;Qiang Xu;Shuang Peng;Zhiyong Pan
  • 通讯作者:
    Zhiyong Pan
Frasnian-Tournaisian (late Devonian to earliest Carboniferous) lithostratigraphy and biostratigraphy of Hainan Island, South China
华南海南岛弗拉斯尼期-图尔奈期(晚泥盆世至早石炭世)岩石地层和生物地层
  • DOI:
    10.4230/lipics.csl.2015.211
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Hua-Zhou Yao;Ren-Jie Zhang;Zhi-Jun Niu;Bing Tu;Zhi-Hong Wang;Yao-Yan He;Fang Song;Lai-shi Zhao;Jian-Xiong Wang;Yang Wang;Wen-Guo Long
  • 通讯作者:
    Wen-Guo Long
Recent advances in photo-assisted electrocatalysts for energy conversion
光辅助能量转换电催化剂的最新进展

Fang Song的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fang Song', 18)}}的其他基金

AF: Small: Quantum Computational Pseudorandomness with Applications
AF:小:量子计算伪随机性及其应用
  • 批准号:
    2041841
  • 财政年份:
    2020
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
AF: Medium: Collaborative Research: Quantum-Secure Cryptography and Fine-Grained Quantum Query Complexity
AF:中:协作研究:量子安全密码学和细粒度量子查询复杂性
  • 批准号:
    2042414
  • 财政年份:
    2020
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Continuing Grant
FET: CAREER: Algorithms, cryptography and complexity meet quantum reductions
FET:职业:算法、密码学和复杂性满足量子缩减
  • 批准号:
    1942706
  • 财政年份:
    2020
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Continuing Grant
FET: CAREER: Algorithms, cryptography and complexity meet quantum reductions
FET:职业:算法、密码学和复杂性满足量子缩减
  • 批准号:
    2054758
  • 财政年份:
    2020
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Continuing Grant
AF: Medium: Collaborative Research: Quantum-Secure Cryptography and Fine-Grained Quantum Query Complexity
AF:中:协作研究:量子安全密码学和细粒度量子查询复杂性
  • 批准号:
    1764042
  • 财政年份:
    2018
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Continuing Grant
AF: Small: Quantum Computational Pseudorandomness with Applications
AF:小:量子计算伪随机性及其应用
  • 批准号:
    1816869
  • 财政年份:
    2018
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
AF: Small: Quantum Computational Pseudorandomness with Applications
AF:小:量子计算伪随机性及其应用
  • 批准号:
    1921047
  • 财政年份:
    2018
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
AF: Medium: Collaborative Research: Quantum-Secure Cryptography and Fine-Grained Quantum Query Complexity
AF:中:协作研究:量子安全密码学和细粒度量子查询复杂性
  • 批准号:
    1901624
  • 财政年份:
    2018
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Continuing Grant

相似国自然基金

离子辐照精准调控SnS2栅极敏感材料缺陷密度增强碳基FET型气体传感器性能的研究
  • 批准号:
    12305330
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
二维铁电MOS场效应管的存算逻辑建模及其代数系统研究
  • 批准号:
    62304115
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于离子敏感场效应管和微纳孔道的三维电荷传感系统研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
半导体敏化栅极场效应管室温氢气传感器性能与机理研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
GaN基芯片场效应管异质结亚十纳米空间热输运机理研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
  • 批准号:
    2329908
  • 财政年份:
    2024
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Small: Reservoir Computing with Ion-Channel-Based Memristors
合作研究:FET:小型:基于离子通道忆阻器的储层计算
  • 批准号:
    2403560
  • 财政年份:
    2024
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
  • 批准号:
    2329909
  • 财政年份:
    2024
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Small: Reservoir Computing with Ion-Channel-Based Memristors
合作研究:FET:小型:基于离子通道忆阻器的储层计算
  • 批准号:
    2403559
  • 财政年份:
    2024
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Small: Theoretical Foundations of Quantum Pseudorandom Primitives
合作研究:FET:小型:量子伪随机原语的理论基础
  • 批准号:
    2329938
  • 财政年份:
    2023
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了