CAREER: Accelerated Insulation Aging due to Fast, Repetitive Voltage Pulses from Wide Bandgap Power Electronics

职业:宽带隙电力电子设备快速、重复的电压脉冲导致绝缘老化加速

基本信息

  • 批准号:
    2306093
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

Title: CAREER: Accelerated Insulation Aging due to Fast, Repetitive Voltage Pulses from Wide Bandgap Power Electronics Abstract: By 2030, it is expected that 80% of all electric power will flow through power electronics systems. Wide bandgap power modules that can tolerate higher voltages and currents than silicon-based modules are the most promising solution to reducing the size and weight of power electronics systems. These wide-bandgap power modules constitute powerful building blocks for power electronics systems, and wide bandgap-based converter/power electronics building blocks are envisaged to be widely used in power grids in low- and medium-voltage applications and possibly in high-voltage applications for high-voltage direct current and flexible alternating current transmission systems. One of the merits of wide bandgap devices is that their slew rates and switching frequencies are much higher than silicon-based devices. However, from the insulation side, frequency and slew rate are two of the most critical factors of a voltage pulse, influencing the level of degradation of the insulation systems that are exposed to such voltage pulses. The shorter the rise time, the shorter the lifetime. Furthermore, lifetime dramatically decreases with increasing frequency. Thus, although wide bandgap devices are revolutionizing power electronics, electrical insulating systems are not prepared for such a revolution; without addressing insulation issues, the electronic power revolution will fail due to dramatically increased failure rates of electrification components. This research plan pioneers overcoming the accelerated aging of insulation systems under wide bandgap-based voltage pulses, and its goal is to characterize, model, and mitigate this insulation degradation issue under atmospheric pressure. The integrated education plan will help to train the next generation of high electric field and electrical insulation engineers/ researchers, who are needed to maintain the competitive vitality of the U.S. power electronics and power system workforce regarding the two trends toward (I) high-power-density designs in various applications and (II) the increasing use of power electronics, leading to the accelerated aging issue. The education plan also includes outreach to students in grades K-12 and underrepresented groups.Accelerated aging and degradation of insulation systems in power system components as a consequence of exposure to the high slew rates (ranging from tens to hundreds of kV/μs) and repetitive (frequencies ranging from hundreds of kHz to MHz) voltage pulses that originate from emerging wide bandgap-based power electronics systems are one of the most significant barriers for the acceptance and utilization of wide bandgap power modules. This research endeavor aims to (1) characterize, (2) model, through a “theoretical-based Multiphysics” approach, and (3) mitigate the accelerated aging problem. Through comprehensive experimental investigations, the accelerated aging issue will be characterized, and the experimental data will also be used to validate the Multiphysics models developed. Furthermore, optimal mitigation methods to solve the accelerated aging problem will be determined through the models that will be developed and verified experimentally. Moreover, high-frequency electromagnetic transient models for rotating machines, transformers, cables, and transmission lines will be developed to determine (i) overvoltages, (ii) electrical stress, and (iii) thermal stress on different components including motor and transformer windings, and stress grading systems in electrical motors and cable terminations under wide bandgap-based voltage pluses.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
标题:职业:由于宽带镜头电源摘要的快速,重复的电压脉冲而导致的绝缘型衰老摘要:到2030年,预计所有电力的80%将通过电力电子系统流动。与基于硅的模块相比,可以耐受更高电压和电流的宽带隙功率模块是降低电源电子系统尺寸和重量的最有希望的解决方案。这些宽式镜头功率模块构成了电力电子系统的强大构件,并且设想在低压和中型电压应用中广泛使用基于带隙的转换器/电力电子构建块,可在电网中广泛使用,并在高压应用中用于高压电流直接直流电流和柔性交替的当前传输系统。宽带设备的优点之一是它们的振荡速率和切换频率比基于硅的设备高得多。然而,从绝缘侧,频率和回弹速率是电压脉冲的两个最关键因素,影响暴露于此类电压脉冲的绝缘系统的降解水平。上升时间短,寿命越短。此外,寿命随着频率的增加而大大减少。尽管宽带设备彻底改变了电源电子设备,但电子绝缘系统并未为这种革命做好准备。在没有解决隔热问题的情况下,由于电力革命大大提高了电气组件的故障率,电子革命将失败。该研究计划的开拓者克服了基于宽带的电压脉冲下绝缘系统的加速衰老,其目标是在大气压力下表征,模型和减轻这种绝缘降解问题。综合教育计划将有助于培训下一代高电场和电气绝缘工程师/研究人员,他们需要维持有关美国电力电子和电力系统的竞争活力,这些劳动力涉及(i)在各种应用中高功率密度设计的两个趋势,以及(ii)越来越多的电力电子使用电力电子,导致加速问题。该教育计划还包括向K-12年级的学生提供宣传和占代表性的群体。由于暴露于高振荡速率(从数十个数十到数百个kV/μs到数百个频率)的范围(从数百个频率中,从数百个频率范围内,Emeres to rse to to rse to rse to toce int off to to rse to rse to to to to rse to to to to rse to to to to to rse to to to to khz to khz totage to khz to toce to khz to khz vols)在电力系统组件中的绝缘系统的衰老和退化。电子系统是接纳和利用宽带隙功率模块的最重要障碍之一。这项研究努力的目的是通过“基于理论的多物理学”方法来表征(1)模型,以及(3)缓解加速的衰老问题。全面的实验研究,加速的老化问题将被表征,实验数据还将用于验证开发的多物理模型。此外,将通过将通过实验开发和验证的模型来确定解决加速老化问题的最佳缓解方法。此外,将开发用于旋转机器,变压器,电缆和传输线的高频电磁瞬态模型,以确定(i)过电压,(ii)电压,(ii)(iii)对不同组件的热应力,包括电动机和变压器绕组,包括电动机和电缆范围内的频率范围内的电动机和电缆终止。通过使用基金会的知识分子和更广泛影响的评论标准来通过评估来支持。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Optimal Bipolar MVDC Coaxial Power Cable Design for Envisaged All Electric Wide Body Aircraft
适用于设想的全电动宽体飞机的最佳双极 MVDC 同轴电源线设计
A Review of Insulation Challenges and Mitigation Strategies in (U)WBG Power Modules Packaging
MVDC Bipolar Power Cables with Rectangular Geometry Design for Envisaged All-Electric Wide-Body Aircraft
适用于设想的全电动宽体飞机的具有矩形几何形状设计的 MVDC 双极电力电缆
The Significance of Accurate Needle Electrode Geometry Definitions in Discharge Plasma Finite-Element Simulations: A Comparative Analysis
精确的针电极几何定义在放电等离子体有限元模拟中的意义:比较分析
Characterizing Nonlinear Field Dependent Conductivity Layers to Mitigate Electric Field Within (U)WBG Power Modules Under High Frequency, High Slew Rate Square Voltage Pulses
表征非线性场相关导电层,以减轻高频、高转换率方波电压脉冲下 (U)WBG 电源模块内的电场
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mona Ghassemi其他文献

Effect of Forced Heat Convection on Heat Transfer for Bipolar MVDC Power Cables in Envisaged Wide-Body All-Electric Aircraft
强制热对流对设想的宽体全电动飞机中双极 MVDC 电力电缆传热的影响
A Test System for Transmission Expansion Planning Studies
输电扩建规划研究的测试系统
  • DOI:
    10.3390/electronics13030664
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Bhuban Dhamala;Mona Ghassemi
  • 通讯作者:
    Mona Ghassemi
NASA N3-X Aircraft DC Power System Design
NASA N3-X 飞机直流电源系统设计
An Optimal Approach to Fabricate MVDC Multilayer Insulation Systems as Flat Samples for Wide-Body All-Electric Aircraft
制造宽体全电动飞机 MVDC 多层绝缘系统作为平面样品的最佳方法
Influence of Aircraft-Environment Pressure Range on Negative DC Partial Discharge Inception Voltage
飞机环境压力范围对负直流局部放电起始电压的影响

Mona Ghassemi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mona Ghassemi', 18)}}的其他基金

Unconventional High Surge Impedance Loading Transmission Line
非常规高浪涌阻抗负载传输线
  • 批准号:
    2306098
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Unconventional High Surge Impedance Loading Transmission Line
非常规高浪涌阻抗负载传输线
  • 批准号:
    2136097
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Accelerated Insulation Aging due to Fast, Repetitive Voltage Pulses from Wide Bandgap Power Electronics
职业:宽带隙电力电子设备快速、重复的电压脉冲导致绝缘老化加速
  • 批准号:
    1942540
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant

相似国自然基金

面向高性能计算的指令级自适应睿频加速芯片关键技术研究
  • 批准号:
    62374100
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
  • 批准号:
    12371308
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
U型离散顺流火蔓延非稳态热输运机理与加速机制研究
  • 批准号:
    52308532
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于ZephIR实测风况的动态风载加速叶片疲劳损伤的作用机理研究
  • 批准号:
    52366017
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
激光增材制造粒子加速器真空系统复杂部件材料真空性能优化研究
  • 批准号:
    12375321
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

Digital Solutions For Accelerated Battery Testing
加速电池测试的数字解决方案
  • 批准号:
    10107050
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    EU-Funded
スマート工場を加速させる新概念の放熱主体エッジAI開発に向けた多値伝送技術
多值传输技术,开发基于散热的新概念边缘人工智能,加速智能工厂
  • 批准号:
    24K14887
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
未来予測のための見かけの速度場・加速度場の数値安定な高速計算理論の構築とその応用
面向未来预测的视速度场和加速度场数值稳定高速计算理论的构建及其应用
  • 批准号:
    24K14996
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Micro-manufacturing of tissue patterned organ-chips for accelerated deployment of new medicines (Patterned OrganChips)
用于加速新药部署的组织图案化器官芯片的微制造(图案化器官芯片)
  • 批准号:
    EP/Z531261/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
Accelerated carbon dioxide release from sedimentary rocks in a warming world
在变暖的世界中沉积岩加速二氧化碳释放
  • 批准号:
    NE/Y000838/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了