CAREER: Accelerated Insulation Aging due to Fast, Repetitive Voltage Pulses from Wide Bandgap Power Electronics

职业:宽带隙电力电子设备快速、重复的电压脉冲导致绝缘老化加速

基本信息

  • 批准号:
    2306093
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

Title: CAREER: Accelerated Insulation Aging due to Fast, Repetitive Voltage Pulses from Wide Bandgap Power Electronics Abstract: By 2030, it is expected that 80% of all electric power will flow through power electronics systems. Wide bandgap power modules that can tolerate higher voltages and currents than silicon-based modules are the most promising solution to reducing the size and weight of power electronics systems. These wide-bandgap power modules constitute powerful building blocks for power electronics systems, and wide bandgap-based converter/power electronics building blocks are envisaged to be widely used in power grids in low- and medium-voltage applications and possibly in high-voltage applications for high-voltage direct current and flexible alternating current transmission systems. One of the merits of wide bandgap devices is that their slew rates and switching frequencies are much higher than silicon-based devices. However, from the insulation side, frequency and slew rate are two of the most critical factors of a voltage pulse, influencing the level of degradation of the insulation systems that are exposed to such voltage pulses. The shorter the rise time, the shorter the lifetime. Furthermore, lifetime dramatically decreases with increasing frequency. Thus, although wide bandgap devices are revolutionizing power electronics, electrical insulating systems are not prepared for such a revolution; without addressing insulation issues, the electronic power revolution will fail due to dramatically increased failure rates of electrification components. This research plan pioneers overcoming the accelerated aging of insulation systems under wide bandgap-based voltage pulses, and its goal is to characterize, model, and mitigate this insulation degradation issue under atmospheric pressure. The integrated education plan will help to train the next generation of high electric field and electrical insulation engineers/ researchers, who are needed to maintain the competitive vitality of the U.S. power electronics and power system workforce regarding the two trends toward (I) high-power-density designs in various applications and (II) the increasing use of power electronics, leading to the accelerated aging issue. The education plan also includes outreach to students in grades K-12 and underrepresented groups.Accelerated aging and degradation of insulation systems in power system components as a consequence of exposure to the high slew rates (ranging from tens to hundreds of kV/μs) and repetitive (frequencies ranging from hundreds of kHz to MHz) voltage pulses that originate from emerging wide bandgap-based power electronics systems are one of the most significant barriers for the acceptance and utilization of wide bandgap power modules. This research endeavor aims to (1) characterize, (2) model, through a “theoretical-based Multiphysics” approach, and (3) mitigate the accelerated aging problem. Through comprehensive experimental investigations, the accelerated aging issue will be characterized, and the experimental data will also be used to validate the Multiphysics models developed. Furthermore, optimal mitigation methods to solve the accelerated aging problem will be determined through the models that will be developed and verified experimentally. Moreover, high-frequency electromagnetic transient models for rotating machines, transformers, cables, and transmission lines will be developed to determine (i) overvoltages, (ii) electrical stress, and (iii) thermal stress on different components including motor and transformer windings, and stress grading systems in electrical motors and cable terminations under wide bandgap-based voltage pluses.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
标题:职业:宽带隙电力电子设备快速重复的电压脉冲导致绝缘老化加速 摘要:到 2030 年,预计 80% 的电力将流经能够承受更高电压的宽带隙电力模块。和电流比硅基模块是减少电力电子系统尺寸和重量的最有前途的解决方案,这些宽带隙电源模块构成了电力电子的强大构建模块。系统和基于宽带隙的转换器/电力电子构建块预计将广泛应用于低压和中压应用的电网中,并可能应用于高压直流和灵活交流输电系统的高压应用中。宽带隙器件的优点之一是其转换速率和开关频率远高于硅基器件,但从绝缘角度来看,频率和转换速率是电压最关键的两个因素。脉冲,影响暴露于此类电压脉冲的绝缘系统的退化程度,上升时间越短,寿命越短,并且寿命随着频率的增加而显着缩短。电气绝缘系统还没有为这样的革命做好准备;如果不解决绝缘问题,由于电气化组件的故障率急剧增加,电子电力革命将失败。该研究计划开创了克服基于宽带隙的电压脉冲下绝缘系统加速老化的问题。 , 和其目标是表征、建模和减轻大气压下的绝缘退化问题。综合教育计划将有助于培训下一代高电场和电气绝缘工程师/研究人员,以保持其竞争活力。美国电力电子和电力系统劳动力面临以下两个趋势:(I)各种应用中的高功率密度设计和(II)电力电子的使用增加,导致加速老龄化问题。该教育计划还包括对学生的宣传。 K-12 年级和由于暴露于高转换速率(数十至数百 kV/μs)和重复电压脉冲(频率范围从数百 kHz 至 MHz),电力系统组件中的绝缘系统会加速老化和退化。源于新兴的基于宽带隙的电力电子系统是宽带隙功率模块接受和使用的最重要障碍之一。这项研究工作的目的是通过一个模型来(1)​​表征,(2)建模。 “基于理论的多物理场”方法,以及(3)通过全面的实验研究来缓解加速老化问题,并且实验数据也将用于验证所开发的多物理场模型。将通过开发和实验验证的模型来确定解决加速老化问题的方法,此外,还将开发旋转电机、变压器、电缆和传输线的高频电磁瞬态模型,以确定(i)过电压, (ii) 电应力,以及 (iii) 不同组件(包括电机和变压器绕组)的热应力,以及基于宽带隙的电压脉冲下电机和电缆终端的应力分级系统。该奖项反映了 NSF 的法定使命,并被认为是值得的通过使用基金会的智力优势和更广泛的影响审查标准进行评估来获得支持。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Optimal Bipolar MVDC Coaxial Power Cable Design for Envisaged All Electric Wide Body Aircraft
适用于设想的全电动宽体飞机的最佳双极 MVDC 同轴电源线设计
A Review of Insulation Challenges and Mitigation Strategies in (U)WBG Power Modules Packaging
MVDC Bipolar Power Cables with Rectangular Geometry Design for Envisaged All-Electric Wide-Body Aircraft
适用于设想的全电动宽体飞机的具有矩形几何形状设计的 MVDC 双极电力电缆
Characterizing Nonlinear Field Dependent Conductivity Layers to Mitigate Electric Field Within (U)WBG Power Modules Under High Frequency, High Slew Rate Square Voltage Pulses
表征非线性场相关导电层,以减轻高频、高转换率方波电压脉冲下 (U)WBG 电源模块内的电场
The Significance of Accurate Needle Electrode Geometry Definitions in Discharge Plasma Finite-Element Simulations: A Comparative Analysis
精确的针电极几何定义在放电等离子体有限元模拟中的意义:比较分析
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mona Ghassemi其他文献

Effect of Forced Heat Convection on Heat Transfer for Bipolar MVDC Power Cables in Envisaged Wide-Body All-Electric Aircraft
强制热对流对设想的宽体全电动飞机中双极 MVDC 电力电缆传热的影响
A Test System for Transmission Expansion Planning Studies
输电扩建规划研究的测试系统
  • DOI:
    10.3390/electronics13030664
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Bhuban Dhamala;Mona Ghassemi
  • 通讯作者:
    Mona Ghassemi
An Optimal Approach to Fabricate MVDC Multilayer Insulation Systems as Flat Samples for Wide-Body All-Electric Aircraft
制造宽体全电动飞机 MVDC 多层绝缘系统作为平面样品的最佳方法
NASA N3-X Aircraft DC Power System Design
NASA N3-X 飞机直流电源系统设计
Influence of Aircraft-Environment Pressure Range on Negative DC Partial Discharge Inception Voltage
飞机环境压力范围对负直流局部放电起始电压的影响

Mona Ghassemi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mona Ghassemi', 18)}}的其他基金

Unconventional High Surge Impedance Loading Transmission Line
非常规高浪涌阻抗负载传输线
  • 批准号:
    2306098
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Unconventional High Surge Impedance Loading Transmission Line
非常规高浪涌阻抗负载传输线
  • 批准号:
    2136097
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Accelerated Insulation Aging due to Fast, Repetitive Voltage Pulses from Wide Bandgap Power Electronics
职业:宽带隙电力电子设备快速、重复的电压脉冲导致绝缘老化加速
  • 批准号:
    1942540
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant

相似国自然基金

高功率激光驱动低β磁重联中磁岛对电子加速影响的研究
  • 批准号:
    12305275
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
U型离散顺流火蔓延非稳态热输运机理与加速机制研究
  • 批准号:
    52308532
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
NOTCH3/HLF信号轴驱动平滑肌细胞表型转化加速半月板退变的机制研究
  • 批准号:
    82372435
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
TWIST1介导的ITGBL1+肿瘤相关成纤维细胞转化加速结肠癌动态演化进程机制及其预防干预研究
  • 批准号:
    82373112
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
实施科学视角下食管癌加速康复外科证据转化障碍机制与多元靶向干预策略研究
  • 批准号:
    82303925
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Digital Solutions For Accelerated Battery Testing
加速电池测试的数字解决方案
  • 批准号:
    10107050
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    EU-Funded
スマート工場を加速させる新概念の放熱主体エッジAI開発に向けた多値伝送技術
多值传输技术,开发基于散热的新概念边缘人工智能,加速智能工厂
  • 批准号:
    24K14887
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
未来予測のための見かけの速度場・加速度場の数値安定な高速計算理論の構築とその応用
面向未来预测的视速度场和加速度场数值稳定高速计算理论的构建及其应用
  • 批准号:
    24K14996
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Micro-manufacturing of tissue patterned organ-chips for accelerated deployment of new medicines (Patterned OrganChips)
用于加速新药部署的组织图案化器官芯片的微制造(图案化器官芯片)
  • 批准号:
    EP/Z531261/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
Accelerated carbon dioxide release from sedimentary rocks in a warming world
在变暖的世界中沉积岩加速二氧化碳释放
  • 批准号:
    NE/Y000838/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了