Combining Chemical Reaction with Single Cell Mass Spectrometry for Real-time Quantification of Nitric Oxide (NO) Inside Live Single Cells

将化学反应与单细胞质谱法相结合,实时定量活单细胞内的一氧化氮 (NO)

基本信息

  • 批准号:
    2305182
  • 负责人:
  • 金额:
    $ 41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-15 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

With support from the Chemical Measurement and Imaging (CMI) Program in the Division of Chemistry (CHE) and the Established Program to Stimulate Competitive Research (EPSCoR), Zhibo Yang and his group at the University of Oklahoma are investigated methods for the possible detection and quantification of nitric oxide (NO) in single cells. NO is a small molecule important for human health and diseases. The production and concentration of NO is tightly regulated as this is an important signaling molecule in healthy biology; deviations in NO concentration can also potentially lead to biological dysfunction; hence methods to accurately detect NO levels, particularly in living systems are in high demand. Because the concentrations of NO in cells are very different from cell to cell, meaningful studies need to be performed at the single-cell level. However, detecting and quantifying NO in single cells is very challenging, primarily because of its instability and low abundance (e.g., a cell diameter is ~1/10 of that of human hair). Dr. Yang and his group will design a microscale device that can be coupled to a sensitive analytical tool, mass spectrometry (MS). This device can directly extract NO from single cells, and then use online chemical reactions to convert it into a stable molecule for sensitive detection and accurate quantification using MS. This new technique can potentially offer a new analytical tool for the measurement of oxidants such as NO at the single level. The summer outreach program is expected to provide lesson development for science teachers at Oklahoma high schools through school-university-community collaborations. The products (e.g., lecture materials, lessons, and survey results) from the outreach program will be accessible by other high schools and general public. In addition, conducting the research will provide professional development for undergraduate and graduate students.NO is a small bioactive molecule playing important roles in numerous cell functions that are relevant to neuronal signaling, immune response, and human disease. The functions of NO are related to its abundance in cells. Due to cell heterogeneity, which has been reported in nearly all biological systems, the abundance of NO significantly varies from cell to cell. Quantification of NO in individual cells could substantially improve our understanding of the functions and mechanisms of NO in biological systems. However, these studies are very challenging, primarily because of the extremely small size of single cells and the reactive, diffusive nature of NO. This proposal combines chemical reactions with single cell mass spectrometry (SCMS) to detect and quantify NO in single cells. Cell lines will be used as model systems to produce endogenous and exogenous NO. An established single-probe SCMS experimental setup will be combined with off-line chemical reactions for NO measurement. The key diagnostic reaction involves the two-electron oxidation of amlodipine (AML) to dehydroamlodipine (DAM ). Since this reaction involves the simple removal of the elements of "H-H" from AML, the observation of DAM is an indirect measure of NO, and it will be important to control for other two-electron oxidation reactions that could, in principle, produce DAM from AML. Perhaps most notably, as part of these studies, a new device, the elongated single-probe (eSingle-probe), is being developed and will be used for real-time reactive (rrSCMS) analysis for NO in single cells.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学系 (CHE) 化学测量和成像 (CMI) 项目和刺激竞争性研究既定项目 (EPSCoR) 的支持下,俄克拉荷马大学杨志博和他的团队研究了可能的检测方法和单细胞中一氧化氮 (NO) 的定量。 NO 是一种对人类健康和疾病很重要的小分子。 NO 的产生和浓度受到严格调控,因为它是健康生物学中重要的信号分子; NO 浓度的偏差也可能导致生物功能障碍;因此,准确检测一氧化氮水平的方法,特别是在生命系统中,非常需要。 由于细胞中 NO 的浓度因细胞而异,因此需要在单细胞水平上进行有意义的研究。然而,检测和定量单细胞中的 NO 非常具有挑战性,主要是因为它的不稳定和丰度低(例如,细胞直径约为人类头发直径的 1/10)。杨博士和他的团队将设计一种微型设备,可以与灵敏的分析工具质谱(MS)相结合。该装置可以直接从单细胞中提取NO,然后利用在线化学反应将其转化为稳定的分子,以便利用MS进行灵敏检测和准确定量。这项新技术有可能为单一水平的 NO 等氧化剂的测量提供一种新的分析工具。夏季外展计划预计将通过学校-大学-社区合作为俄克拉荷马州高中的科学教师提供课程开发。外展计划的产品(例如讲座材料、课程和调查结果)将可供其他高中和公众使用。此外,开展这项研究将为本科生和研究生提供专业发展。NO是一种生物活性小分子,在与神经信号、免疫反应和人类疾病相关的众多细胞功能中发挥着重要作用。 NO的功能与其在细胞中的丰度有关。由于几乎所有生物系统中都存在细胞异质性,NO 的丰度因细胞而异。对单个细胞中 NO 的定量可以极大地提高我们对生物系统中 NO 功能和机制的理解。然而,这些研究非常具有挑战性,主要是因为单细胞的尺寸极小以及 NO 的反应性、扩散性。该提案将化学反应与单细胞质谱 (SCMS) 相结合,以检测和定量单细胞中的 NO。细胞系将用作模型系统来产生内源性和外源性NO。已建立的单探针 SCMS 实验装置将与离线化学反应相结合,用于 NO 测量。关键的诊断反应涉及氨氯地平 (AML) 到脱氢氨氯地平 (DAM) 的双电子氧化。 由于该反应涉及从 AML 中简单去除“H-H”元素,因此观察 DAM 是 NO 的间接测量,并且控制原则上可能产生 DAM 的其他双电子氧化反应非常重要来自反洗钱。也许最值得注意的是,作为这些研究的一部分,正在开发一种新设备,即细长单探针 (eSingle-probe),并将用于单细胞中 NO 的实时反应 (rrSCMS) 分析。该奖项反映了通过使用基金会的智力价值和更广泛的影响审查标准进行评估,NSF 的法定使命被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhibo Yang其他文献

Blade Tip Timing Signal Filtering Method Based on Sampling Aliasing Frequency Map
基于采样混频图的叶尖定时信号滤波方法
Homogenization and Localization of Ratcheting Behavior of Composite Materials and Structures with the Thermal Residual Stress Effect
热残余应力效应下复合材料和结构棘轮行为的均匀化和局域化
  • DOI:
    10.3390/ma12183048
  • 发表时间:
    2019-09
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Danhui Yang;Zhibo Yang;Zhi Zhai;Xuefeng Chen
  • 通讯作者:
    Xuefeng Chen
Resolving the α-effect in gas phase SN2 reactions: A Marcus theory approach
解决气相 SN2 反应中的 α 效应:马库斯理论方法
  • DOI:
    10.1016/j.ijms.2012.02.014
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    J. M. Garver;Zhibo Yang;Charles M. Nichols;Benjamin B. Worker;S. Gronert;V. Bierbaum
  • 通讯作者:
    V. Bierbaum
Efficient Monaural Speech Enhancement using Spectrum Attention Fusion
使用频谱注意力融合进行高效的单声道语音增强
The α-effect in elimination reactions and competing mechanisms in the gas phase
气相消除反应中的α效应和竞争机制
  • DOI:
    10.1016/j.ijms.2012.07.016
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    J. M. Garver;Zhibo Yang;N. Wehres;Charles M. Nichols;Benjamin B. Worker;V. Bierbaum
  • 通讯作者:
    V. Bierbaum

Zhibo Yang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhibo Yang', 18)}}的其他基金

Collaborative Research: Creatine Cycling in Marine Bacterial and Phytoplankton Assemblages
合作研究:海洋细菌和浮游植物群中的肌酸循环
  • 批准号:
    1634630
  • 财政年份:
    2016
  • 资助金额:
    $ 41万
  • 项目类别:
    Standard Grant

相似国自然基金

磁性/电活性MOFs传感界面结合限域核酸放大反应技术用于构建食源性致病菌电化学适配体传感器的研究
  • 批准号:
    82360647
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
氮掺杂碳点传感界面结合加速DNA反应放大技术在食源性致病菌电化学DNA传感器中的应用研究
  • 批准号:
    82060599
  • 批准年份:
    2020
  • 资助金额:
    35 万元
  • 项目类别:
    地区科学基金项目
美国白蛾性信息素受体与结合蛋白的功能及其互作研究
  • 批准号:
    31870640
  • 批准年份:
    2018
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
电化学驱动金属/氧化锆界面结合与调控
  • 批准号:
    51871110
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
甘薯小象甲性信息素结合蛋白的功能研究
  • 批准号:
    31660627
  • 批准年份:
    2016
  • 资助金额:
    37.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Highly-efficient power generation from biomass by combining chemical energy conversion and electrochemical reaction
化学能转化与电化学反应相结合的生物质高效发电
  • 批准号:
    18K04826
  • 财政年份:
    2018
  • 资助金额:
    $ 41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of the dynamic factors promoting the chemical reaction by combining the quantum mechanical and the molecular dynamics methods
量子力学与分子动力学相结合分析促进化学反应的动力因素
  • 批准号:
    17K05766
  • 财政年份:
    2017
  • 资助金额:
    $ 41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Combining chemical shift-based and experimental approaches to study enzyme dynami
结合基于化学位移和实验的方法来研究酶动力学
  • 批准号:
    8693572
  • 财政年份:
    2014
  • 资助金额:
    $ 41万
  • 项目类别:
Combining chemical shift-based and experimental approaches to study enzyme dynami
结合基于化学位移和实验的方法来研究酶动力学
  • 批准号:
    9261551
  • 财政年份:
    2014
  • 资助金额:
    $ 41万
  • 项目类别:
Combining Nickel and Photoredox Catalysis
结合镍和光氧化还原催化
  • 批准号:
    9176836
  • 财政年份:
    2012
  • 资助金额:
    $ 41万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了