SBIR Phase I: A Mixed-Computation Neural Network Acceleration Stack for Edge Inference
SBIR 第一阶段:用于边缘推理的混合计算神经网络加速堆栈
基本信息
- 批准号:2304304
- 负责人:
- 金额:$ 27.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-12-15 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader/commercial impact of this Small Business Innovation Research (SBIR) Phase I project is to improve the sustainability of artificial intelligence by reducing carbon emissions for training neural networks and performing inference at the edge. Additionally, the technology will spawn new applications and use cases for edge inference (including personal health, advanced data analytics, and informed decision-making), resulting in significant improvements in people's lives and well-being. The commercial potential is substantial (i.e., tens of billions of dollars annually), as are the potential economic benefits to US high-technology industries.This Small Business Innovation Research (SBIR) Phase I project sets out to develop a mixed-computation neural network acceleration stack utilizing optimally designed and provisioned hardware resources. This acceleration stack empowers a heterogeneous hardware realization of a neural network inference engine whereby computations required in various network layers may be done by using different number systems and different precision levels. The acceleration stack can thus achieve very high inference speed and energy efficiency while maintaining the inference accuracy compared to a homogeneous hardware realization of the network using 16-bit floating point computations. To support the design, optimization, and runtime efficiency of this edge inference accelerator, a full suite of software and design automation tools comprising a distiller for neural network architecture optimization and training, a logic synthesizer for generating optimized gate-level realization of very large and complex Boolean and multi-valued logic functions, a compiler for generating and scheduling control-flow and data path instructions that are executed on the target fabric, and a runtime system for orchestrating data movement will also be provided. The resulting edge inference accelerator will be deployable on resource-constrained, energy-limited, and cost-sensitive edge devices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项小型企业创新研究(SBIR)I阶段项目的更广泛/商业影响是通过减少培训神经网络的碳排放并在边缘进行推理来提高人工智能的可持续性。此外,该技术将为边缘推理(包括个人健康,高级数据分析和知情决策)产生新的应用程序和用例,从而大大改善人们的生活和福祉。商业潜力是巨大的(即每年数十亿美元),对美国高技术行业的潜在经济利益也是如此。这项小型企业创新研究(SBIR)I阶段项目旨在开发使用最佳设计和提供的设计和提供的硬件资源来开发混合构成神经网络加速堆栈。这种加速堆栈赋予神经网络推理引擎的异质硬件实现,从而可以通过使用不同的数字系统和不同的精度级别来完成各种网络层中所需的计算。因此,与使用16位浮点计算对网络的均匀硬件实现相比,加速堆栈可以达到非常高的推理速度和能量效率,同时保持推理精度。 To support the design, optimization, and runtime efficiency of this edge inference accelerator, a full suite of software and design automation tools comprising a distiller for neural network architecture optimization and training, a logic synthesizer for generating optimized gate-level realization of very large and complex Boolean and multi-valued logic functions, a compiler for generating and scheduling control-flow and data path instructions that are executed on the target还将提供织物和用于编排数据移动的运行时系统。由此产生的边缘推理加速器将可以在资源约束,能源限制和成本敏感的边缘设备上进行部署。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子和更广泛影响的评估评估标准来通过评估来获得支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mahdi Nazemi其他文献
Mahdi Nazemi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
低碳环境下考虑阶段间运输混合流水车间成组调度的协同智能优化方法
- 批准号:72301026
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于模型-数据混合驱动多阶段区间优化的风光氢协同调度
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于模型-数据混合驱动多阶段区间优化的风光氢协同调度
- 批准号:62203181
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
粗抛阶段面形大误差的反衍混合自适应补偿干涉检测方法研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
家族企业不同传承阶段的特征及其“一带一路”背景下的国际化战略选择:基于混合博弈的视角
- 批准号:72102199
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
SBIR Phase I: Mixed reality wearable technology to improve workflow, productivity, and training in medical sterilization environments
SBIR 第一阶段:混合现实可穿戴技术,用于改善医疗灭菌环境中的工作流程、生产力和培训
- 批准号:
2144074 - 财政年份:2022
- 资助金额:
$ 27.49万 - 项目类别:
Standard Grant
SBIR Phase I: Metasurface optical elements for augmented/mixed-reality smart glasses
SBIR 第一阶段:用于增强/混合现实智能眼镜的超表面光学元件
- 批准号:
2015151 - 财政年份:2020
- 资助金额:
$ 27.49万 - 项目类别:
Standard Grant
SBIR Phase II: A Spectroscopic THz Sensor for Mixed Gas Analysis and Air Pollution Monitoring
SBIR 第二阶段:用于混合气体分析和空气污染监测的光谱太赫兹传感器
- 批准号:
1831168 - 财政年份:2018
- 资助金额:
$ 27.49万 - 项目类别:
Standard Grant
SBIR Phase II: Analog/Mixed-Signal Integrated Circuit Verification Coverage
SBIR 第二阶段:模拟/混合信号集成电路验证覆盖范围
- 批准号:
1431022 - 财政年份:2014
- 资助金额:
$ 27.49万 - 项目类别:
Standard Grant
SBIR Phase I: Enhanced Voice Capture for Mobile Devices Using a Mixed-Response-Type Array
SBIR 第一阶段:使用混合响应型阵列增强移动设备的语音捕获
- 批准号:
1248931 - 财政年份:2013
- 资助金额:
$ 27.49万 - 项目类别:
Standard Grant