Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms

合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法

基本信息

  • 批准号:
    2221742
  • 负责人:
  • 金额:
    $ 19.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

The fusion of AI and IoT creates Artificial-Intelligence-of-Things (AIoT), which is expected to not only boost the intelligence on end devices, but also unleash the power of IoT data better and faster. Given the presence of confidential and distributed IoT data in many fields, federated learning has been one promising approach to unlock the potential of AIoT by enabling collaborative intelligence without migrating private end-device data to a central server. However, the heavy burden of state-of-the-art AI on storage and computing resources stands at odds with most IoT hardware platforms that are resource-constrained, which raises daunting challenges when deploying federated intelligence in AIoT. The research team explores hardware-efficient AI techniques to support federated knowledge transfer across diverse IoT hardware platforms to expand the scope of AIoT from theory, architecture, and algorithm perspectives. The proposed research brings tangible benefits to a broad range of disciplines that employ AI and IoT technologies, promoting the fusion of AI and IoT. The project provides training opportunities for undergraduate and graduate students from underrepresented groups. The outreach efforts on AIoT topics and research findings are directed towards K-12 audiences. This project provides the theoretical and empirical evidence to facilitate the deployment of hardware-efficient AI techniques in federated IoT environments, which fills a critical void - the existing approaches fail to address the widespread resource, efficiency, and privacy challenges in AIoT. This project consists of four aspects: (1) enabling hardware-efficient AI from microscope operations, neural quantization, to theoretically guide specialized quantization for federated intelligence across various IoT hardware platforms, (2) exploring another ground-breaking hardware-efficient AI technique, neural architecture pruning, to seek optimal sub-network architectures in a data-agnostic manner, (3) identifying new privacy vulnerabilities and developing defensive mechanisms for the AIoT designs to encourage broad participation, (4) establishing a general-purpose AIoT testbed. Through the architecture-algorithm-hardware co-design, the research intends to unleash the utmost potential of various IoT hardware platforms and federated intelligence to expand the scope of AIoT applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能与物联网的融合创造了物联网(AIoT),它不仅能提升终端设备的智能化,还能更好更快地释放物联网数据的力量。鉴于许多领域都存在机密和分布式物联网数据,联邦学习是一种很有前途的方法,可以通过启用协作智能而无需将私有终端设备数据迁移到中央服务器来释放 AIoT 的潜力。然而,最先进的人工智能对存储和计算资源的沉重负担与大多数资源有限的物联网硬件平台格格不入,这在人工智能物联网中部署联邦智能时提出了严峻的挑战。研究团队探索硬件高效的人工智能技术,以支持跨不同物联网硬件平台的联合知识转移,从理论、架构和算法的角度扩展AIoT的范围。拟议的研究为采用人工智能和物联网技术的广泛学科带来了切实的好处,促进了人工智能和物联网的融合。该项目为来自弱势群体的本科生和研究生提供培训机会。 AIoT 主题和研究成果的推广工作面向 K-12 受众。该项目提供了理论和经验证据,以促进在联合物联网环境中部署硬件高效的人工智能技术,填补了一个关键空白——现有方法无法解决人工智能物联网中广泛的资源、效率和隐私挑战。该项目由四个方面组成:(1)从显微镜操作、神经量化到理论上指导跨各种物联网硬件平台的联邦智能的专业量化,实现硬件高效的人工智能,(2)探索另一种突破性的硬件高效的人工智能技术,神经架构修剪,以与数据无关的方式寻求最佳子网络架构,(3) 识别新的隐私漏洞并为 AIoT 设计开发防御机制以鼓励广泛参与,(4) 建立通用 AIoT 测试床。该研究旨在通过架构-算法-硬件协同设计,释放各种物联网硬件平台和联邦智能的最大潜力,扩大AIoT应用范围。该奖项体现了NSF的法定使命,经评估认为值得支持利用基金会的智力优势和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nima Maghari其他文献

Nima Maghari的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

面向5G通信的超高频FBAR耗散机理和耗散稳定性研究
  • 批准号:
    12302200
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
宽运行范围超高频逆变系统架构拓扑与调控策略研究
  • 批准号:
    52377175
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
超高频同步整流DC-DC变换器效率优化关键技术研究
  • 批准号:
    62301375
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
衔接蛋白SHF负向调控胶质母细胞瘤中EGFR/EGFRvIII再循环和稳定性的功能及机制研究
  • 批准号:
    82302939
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
强震动环境下10-100Hz超高频GNSS误差精细建模及监测应用研究
  • 批准号:
    42274025
  • 批准年份:
    2022
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 19.06万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331301
  • 财政年份:
    2024
  • 资助金额:
    $ 19.06万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402806
  • 财政年份:
    2024
  • 资助金额:
    $ 19.06万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 19.06万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402805
  • 财政年份:
    2024
  • 资助金额:
    $ 19.06万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了