CAS-Climate:Collaborative Research:Understanding How Electrochemical Cation Trapping in Metal Oxides Enhances Subsequent Reversible Insertion of Anions in Forming Metal Oxyhalides
CAS-气候:合作研究:了解金属氧化物中的电化学阳离子捕获如何增强随后形成金属卤氧化物时阴离子的可逆插入
基本信息
- 批准号:2221645
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Non-technical Abstract: Greater adoption of renewable energy sources necessitates economical and scalable electric-energy storage solutions. Novel battery chemistry holds the key to much-needed next-generation electric energy storage technologies to enable a sustainable society. Conventional batteries utilize cation-focused battery chemistry, which means positively charged ions migrate during the charge and discharge of a battery. With this project, supported by the Ceramics program in the Division of Materials Research, researchers at Oregon State University and Vanderbilt University investigate a possible mechanism for anion-based batteries (with migrating negatively charged ions instead of positively charged ones) for grid storage. Anion batteries have a great potential to replace current cation batteries for scalable energy storage, but fundamental mechanistic understanding is lacking. The project generates knowledge about what chemical environment in the metal-oxide battery material is more suitable for the transport and storage of anions during battery operation. Only sustainable, earth-abundant elements are investigated in the project for the electrodes, including manganese- and iron-based oxides, halide ions, and hydroxide; they are coupled with inexpensive and safe aqueous electrolytes. The new battery chemistry, if developed successfully, will greatly benefit our society by providing a low-cost, environmentally friendly energy-storage solution in the future. As part of the project the PIs introduce state-of-the-art materials research of novel battery chemistry to students from underserved communities and disseminate the knowledge to the public through institutional tools such as an online course.Technical Abstract:The knowledge of electrochemical anion insertion in hosts remains limited, particularly when the hosts are metal oxides. Anion insertion in metal oxides is inherently challenging because the interstitials are lined with oxides that repulse incoming anions. This project, supported by the Ceramics program in the Division of Materials Research, precisely tackles this problem by transforming the local structures of metal oxides with trapped cations. Researchers at Oregon State University and Vanderbilt University elucidate a new ion insertion mechanism whereby the irreversible insertion of cations in metal oxides promotes the reversible anion storage to form metal oxyhalides. Their research tests the central hypothesis that cation trapping transforms the structure of metal oxides and the chemical environment such that the subsequent anion insertion is greatly enhanced. They elucidate how the cation trapping alters the local structures of metal oxides and how the anions interact with the trapped cations and advance our understanding of the chemical environment and the changes caused by cation trapping and the anion insertion. Utilizing the synergy of expertise in electrochemical and structural characterization and first principles predictive modeling, the researchers establish mechanistic understandings of this new mechanism by investigating the model structure of spinel Mn3O4, in which the trapped Zn-ions enhances chloride storage. The project also develops a general principle of the new mechanism across different cations to be trapped, metal oxides as hosts, and anion charge carriers. Additionally, the integrated experimental and computation studies lay the foundation for a promising new research field using anion insertion to form metal oxyhalides.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:更多地采用可再生能源需要经济且可扩展的电能存储解决方案。新型电池化学是实现可持续社会急需的下一代电能存储技术的关键。传统电池采用以阳离子为中心的电池化学成分,这意味着带正电的离子在电池充电和放电过程中会迁移。在材料研究部陶瓷项目的支持下,俄勒冈州立大学和范德比尔特大学的研究人员通过这个项目研究了阴离子电池(迁移带负电的离子而不是带正电的离子)用于电网存储的可能机制。阴离子电池具有取代当前阳离子电池以实现可扩展能量存储的巨大潜力,但缺乏基本的机理理解。该项目产生了有关金属氧化物电池材料中哪种化学环境更适合电池运行期间阴离子传输和存储的知识。该电极项目仅研究地球上丰富的可持续元素,包括锰基和铁基氧化物、卤化物离子和氢氧化物;它们与廉价且安全的水性电解质结合。新的电池化学材料如果开发成功,将在未来提供低成本、环保的能源存储解决方案,从而极大造福我们的社会。作为该项目的一部分,PI 向服务匮乏社区的学生介绍新型电池化学的最先进材料研究,并通过在线课程等机构工具向公众传播知识。 技术摘要:电化学阴离子的知识主体中的插入仍然有限,特别是当主体是金属氧化物时。在金属氧化物中插入阴离子本质上是具有挑战性的,因为间隙内衬有氧化物,会排斥进入的阴离子。该项目由材料研究部陶瓷项目支持,通过用捕获的阳离子改变金属氧化物的局部结构来精确解决这个问题。俄勒冈州立大学和范德比尔特大学的研究人员阐明了一种新的离子插入机制,即金属氧化物中阳离子的不可逆插入促进了可逆阴离子存储,形成金属卤氧化物。他们的研究测试了中心假设,即阳离子捕获改变了金属氧化物的结构和化学环境,从而大大增强了随后的阴离子插入。他们阐明了阳离子捕获如何改变金属氧化物的局部结构以及阴离子如何与捕获的阳离子相互作用,并增进了我们对化学环境以及阳离子捕获和阴离子插入引起的变化的理解。利用电化学和结构表征方面的专业知识以及第一原理预测模型的协同作用,研究人员通过研究尖晶石 Mn3O4 的模型结构,建立了对这一新机制的机械理解,其中捕获的锌离子增强了氯离子的储存。该项目还开发了跨不同阳离子被捕获、金属氧化物作为主体和阴离子电荷载体的新机制的一般原理。此外,综合实验和计算研究为使用阴离子插入形成金属卤氧化物的有前途的新研究领域奠定了基础。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reversible Cl 2 /Cl – Redox for Low-Temperature Aqueous Batteries
用于低温水系电池的可逆 Cl 2 /Cl → 氧化还原
- DOI:10.1021/acsenergylett.2c02757
- 发表时间:2023-02
- 期刊:
- 影响因子:22
- 作者:Sui, Yiming;Lei, Ming;Yu, Mingliang;Scida, Alexis;Sandstrom, Sean K.;Stickle, William;O’Larey, Timothy D.;Jiang, De;Ji, Xiulei
- 通讯作者:Ji, Xiulei
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiulei Ji其他文献
Creation of a new type of ion exchange material for rapid, high-capacity, reversible and selective ion exchange without swelling and entrainment† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5sc04507j
创建一种新型离子交换材料,用于快速、高容量、可逆和选择性离子交换,无需膨胀和夹带† †提供电子补充信息 (ESI),请参阅 DOI:10.1039/c5sc04507j。
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:8.4
- 作者:
Baiyan Li;Yiming Zhang;Dingxuan Ma;Zhenyu Xing;Tianliang Ma;Zhan Shi;Xiulei Ji;Shengqian Ma - 通讯作者:
Shengqian Ma
Recent Development on Anodes for Na-Ion Batteries
钠离子电池负极的最新进展
- DOI:
10.1002/chin.201528315 - 发表时间:
2015-07-01 - 期刊:
- 影响因子:0
- 作者:
Clement Bommier;Xiulei Ji - 通讯作者:
Xiulei Ji
Strategies towards Low-Cost Dual-Ion Batteries with High Performance
低成本高性能双离子电池的策略
- DOI:
10.1002/anie.201814294 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Xiaolong Zhou;Qirong Liu;Chunlei Jiang;Bifa Ji;Xiulei Ji;Yongbing Tang;Hui-Ming Cheng - 通讯作者:
Hui-Ming Cheng
Silicon-based thermoelectrics made from a boron-doped silicon dioxide nanocomposite
由掺硼二氧化硅纳米复合材料制成的硅基热电材料
- DOI:
10.1021/cm401990c - 发表时间:
2013 - 期刊:
- 影响因子:8.6
- 作者:
Tristan Day;Yifeng Shi;Xiulei Ji;Stephan Kraemer;Carolyn E. Mills;Armin Moosazadeh;Martin Moskovits;G. Jeffrey Snyder;Galen D. Stucky - 通讯作者:
Galen D. Stucky
Fundamentally Addressing Bromine Storage through Reversible Solid-State Confinement in Porous Carbon Electrodes: Design of a High-Performance Dual-Redox Electrochemical Capacitor.
通过多孔碳电极中的可逆固态限制从根本上解决溴存储问题:高性能双氧化还原电化学电容器的设计。
- DOI:
10.1021/jacs.7b04603 - 发表时间:
2017-07-11 - 期刊:
- 影响因子:15
- 作者:
S. Yoo;Brian W. Evanko;Xingfeng Wang;Monica Romelczyk;A. Taylor;Xiulei Ji;S. Boettcher;G. Stucky - 通讯作者:
G. Stucky
Xiulei Ji的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiulei Ji', 18)}}的其他基金
Mechanistic Investigation of Metal Sulfide Electrodes for High-Energy Non-Aqueous Anion Batteries
高能非水阴离子电池金属硫化物电极的机理研究
- 批准号:
2215645 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Elucidating Correlations Between Solvation Structure and Electrochemical Behavior of Water-in-Salt Electrolytes for Highly Reversible Zinc Metal Anode
合作研究:阐明高度可逆锌金属阳极的盐包水电解质的溶剂化结构与电化学行为之间的相关性
- 批准号:
2038381 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Elucidation of the Grotthuss Topochemistry in Reticular Electrodes for Fast Proton Batteries
合作研究:阐明快速质子电池网状电极中的 Grotthuss 拓扑化学
- 批准号:
2004636 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Carbon Anodes in Potassium-Ion Batteries
职业:钾离子电池中的碳阳极
- 批准号:
1551693 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Fundamental Studies of Na-Ion Storage in Hard Carbon
合作研究:硬碳中钠离子储存的基础研究
- 批准号:
1507391 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
相似国自然基金
气候变暖背景下大兴安岭地区火干扰对多年冻土的影响机理
- 批准号:42371098
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
跨省电力贸易减缓和适应气候变化的微观机制及影响研究
- 批准号:72304272
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
中元古界烃源岩天文驱动的气候变化及其环境响应:以华北克拉通为例
- 批准号:42372163
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
气候变化对南大洋背风波能量收支的影响
- 批准号:42306013
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高分辨率气候风险及光伏能源数据集构建与汇聚共享技术研究
- 批准号:42341206
- 批准年份:2023
- 资助金额:60 万元
- 项目类别:专项基金项目
相似海外基金
Collaborative Research: CAS-Climate: Linking Activities, Expenditures and Energy Use into an Integrated Systems Model to Understand and Predict Energy Futures
合作研究:CAS-气候:将活动、支出和能源使用连接到集成系统模型中,以了解和预测能源未来
- 批准号:
2243099 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: CAS-Climate: Reservoir dead pool in the western United States: probability and consequences of a novel extreme event
合作研究:CAS-气候:美国西部水库死池:新型极端事件的概率和后果
- 批准号:
2241893 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: CAS-Climate: Structure, Dynamics, and Reaction Mechanism of Supported Single Atom for Photocatalytic CO2 Reduction
合作研究:CAS-气候:光催化CO2还原的负载单原子的结构、动力学和反应机制
- 批准号:
2321203 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
- 批准号:
2308679 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Collaborative Research: CAS-Climate: Reservoir dead pool in the western United States: probability and consequences of a novel extreme event
合作研究:CAS-气候:美国西部水库死池:新型极端事件的概率和后果
- 批准号:
2241892 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant