Collaborative Research: An Extended Reality Factory Innovation for Adaptive Problem-solving and Personalized Learning in Manufacturing Engineering
协作研究:制造工程中自适应问题解决和个性化学习的扩展现实工厂创新
基本信息
- 批准号:2302833
- 负责人:
- 金额:$ 47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Rapid advances in technology increase the complexity and dynamic characteristics of problems and their solutions in industry. Problem solving is understood as the process required to achieve a goal in an uncertain environment. Understanding problem-solving entails exploring the processes used in conceptualizing the problem and in moving from the initial state to the goal. Traditional problem-solving approaches focus more on developing solutions in static situations, and are less concerned about the pace of dynamic changes and technological disruptions, which require adaptive problem-solving skills (APS). Thus, to succeed in this environment, future engineers should be equipped with APS skills. This project will design and develop a virtual factory, with physical sensors, to investigate the impact of technological advances on problem-solving skills and develop a personalized learning platform for manufacturing education to meet the needs of learners and educators. First, adaptive problem situations that relate to the past, present, and future of manufacturing will be designed. Second, extended reality (xR) environments will be developed and integrated with eye and motion tracking to provide real-time monitoring of learning behavior and dynamics. Third, analytical models will be created to enhance the proficiency of APS abilities. Research outcomes will be evaluated and disseminated via scholarly publications and educational outreach programs.This project integrates physical, virtual reality and augmented reality manufacturing simulations with sensing technology to characterize and quantify APS skills. The project will have a direct positive impact on teaching and learning of APS by simulating the industrial evolutions and dynamical changes in manufacturing settings. Rich data collected through eye, facial and motion tracking will be utilized to analyze nonlinear human behaviors, thereby providing dynamic models to improve the user learning experience and optimize APS skills. The research will be guided by the following questions: (1) To what extent do heterogeneous learning modes (physical, virtual, mixed) enhance the problem-solving experience? (2) What is the impact of integrating artificial intelligence and virtual agents on personalized learning? and, (3) How to leverage sensor signals to model and analyze the development process of APS skills? This research will also characterize multiple pathways of analyzing and solving problems, as well as the factors driving these pathways. The project will provide practical tools for xR simulations that will complement classroom instruction and help educators diagnose and tailor instruction to learner needs. Project outcomes will provide hands-on and immersive experiences to diverse learners, including undergraduate and graduate students, and better prepare them for the next industrial revolution. Integration of sensing technologies with xR environments will also facilitate communication and problem-solving for a diversity of learners.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
技术的快速进步增加了问题的复杂性和动态特征及其在行业中的解决方案。解决问题被理解为在不确定环境中实现目标所需的过程。 理解解决问题的过程需要探索用于概念问题并从初始状态转移到目标的过程。传统的问题解决方法更多地集中于在静态情况下开发解决方案,而不太关心动态变化和技术破坏的步伐,这些变化和技术破坏需要适应性解决问题的技能(AP)。因此,为了在这种环境中取得成功,未来的工程师应配备APS技能。该项目将设计和开发具有物理传感器的虚拟工厂,以调查技术进步对解决问题技能的影响,并为制造教育提供个性化的学习平台,以满足学习者和教育者的需求。首先,将设计与过去,现在和未来相关的自适应问题情况。其次,将开发扩展现实(XR)环境,并与眼睛和运动跟踪集成,以提供对学习行为和动态的实时监控。第三,将创建分析模型以提高APS能力的能力。研究成果将通过学术出版物和教育外展计划进行评估和传播。该项目将物理,虚拟现实和增强现实制造模拟与传感技术相结合,以表征和量化APS技能。该项目将通过模拟工业发展和制造环境的动态变化来直接对AP的教学和学习产生积极影响。通过眼睛,面部和运动跟踪收集的丰富数据将用于分析非线性人类行为,从而提供动态模型来改善用户学习体验并优化APS技能。该研究将以以下问题为指导:(1)异质学习模式(物理,虚拟,混合)在多大程度上增强了解决问题的经验? (2)整合人工智能和虚拟代理对个性化学习的影响是什么? (3)如何利用传感器信号来建模和分析APS技能的开发过程? 这项研究还将表征分析和解决问题的多种途径以及推动这些途径的因素。该项目将为XR模拟提供实用的工具,这些工具将补充课堂教学,并帮助教育者诊断和量身定制学习者需求。项目成果将为包括本科生和研究生在内的各种学习者提供动手和沉浸式的经验,并为下一届工业革命做好准备。将传感技术与XR环境的集成还将促进多样化的学习者的沟通和解决问题。该奖项反映了NSF的法定任务,并且使用基金会的知识分子优点和更广泛的影响审查标准,被认为值得通过评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Faisal Aqlan其他文献
Applying Product Manufacturing Techniques to Teach Data Analytics in Industrial Engineering: A Project Based Learning Experience
应用产品制造技术教授工业工程中的数据分析:基于项目的学习体验
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Faisal Aqlan;Joshua C. Nwokeji - 通讯作者:
Joshua C. Nwokeji
Optimal Cholera Vaccine Allocation Policies in Developing Countries: A Case Study
发展中国家霍乱疫苗的最佳分配政策:案例研究
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
A. G. Qasem;Abdulrahman Shamsan;Faisal Aqlan - 通讯作者:
Faisal Aqlan
A risk-based optimization framework for integrated supply chains using genetic algorithm and artificial neural networks
使用遗传算法和人工神经网络的基于风险的集成供应链优化框架
- DOI:
10.1016/j.ijpe.2019.107569 - 发表时间:
2020 - 期刊:
- 影响因子:12
- 作者:
N. Nezamoddini;A. Gholami;Faisal Aqlan - 通讯作者:
Faisal Aqlan
Sensor-Based Virtual Reality for Clinical Decision Support in the Assessment of Mental Disorders
基于传感器的虚拟现实用于精神障碍评估中的临床决策支持
- DOI:
10.1109/cog47356.2020.9231896 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Bryant Niederriter;Alice Rong;Faisal Aqlan;Hui Yang - 通讯作者:
Hui Yang
AN APPROXIMATION TO THE INVERSE OF LEFT-SIDED TRUNCATED GAUSSIAN CUMULATIVE NORMAL DENSITY FUNCTION USING POLYA’S MODEL TO GENERATE RANDOM VARIATES FOR SIMULATION APPLICATIONS
左端截断高斯累积正态密度函数的反函数的近似,利用Polya模型生成随机变量用于仿真应用
- DOI:
10.5937/jaes0-35413 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
M. Hamasha;Abdulaziz Ahmed;Haneen Ali;S. Hamasha;Faisal Aqlan - 通讯作者:
Faisal Aqlan
Faisal Aqlan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Faisal Aqlan', 18)}}的其他基金
REU Site in Advanced Manufacturing and Supply Chain
REU 先进制造和供应链基地
- 批准号:
2244119 - 财政年份:2023
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
Integrating Undergraduate Learning in Engineering and Business to Improve Manufacturing Education
将工程和商业本科学习相结合以改善制造教育
- 批准号:
2211066 - 财政年份:2022
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
Collaborative Research: Replication of a Community-Engaged Educational Ecosystem Model in Rust Belt Cities
合作研究:在铁锈地带城市复制社区参与的教育生态系统模式
- 批准号:
2111377 - 财政年份:2021
- 资助金额:
$ 47万 - 项目类别:
Continuing Grant
Research Initiation: Advanced Modeling of Metacognitive Problem Solving and Group Effectiveness in Collaborative Engineering Teams
研究启动:协作工程团队中元认知问题解决和团队有效性的高级建模
- 批准号:
2208680 - 财政年份:2021
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
RET Site in Manufacturing Simulation and Automation
制造仿真和自动化中的 RET 站点
- 批准号:
2055384 - 财政年份:2021
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
RET Site in Manufacturing Simulation and Automation
制造仿真和自动化中的 RET 站点
- 批准号:
2204719 - 财政年份:2021
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
GOALI: Stochastic Optimization Framework for Energy-Smart Re/Manufacturing Systems
GOALI:能源智能再造/制造系统的随机优化框架
- 批准号:
2038325 - 财政年份:2021
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
Collaborative Research: Replication of a Community-Engaged Educational Ecosystem Model in Rust Belt Cities
合作研究:在铁锈地带城市复制社区参与的教育生态系统模式
- 批准号:
2152282 - 财政年份:2021
- 资助金额:
$ 47万 - 项目类别:
Continuing Grant
RET Site in Manufacturing Simulation and Automation
制造仿真和自动化中的 RET 站点
- 批准号:
2204601 - 财政年份:2021
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
Integrating Undergraduate Learning in Engineering and Business to Improve Manufacturing Education
将工程和商业本科学习相结合以改善制造教育
- 批准号:
2021303 - 财政年份:2020
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
相似国自然基金
西北干旱区典型内陆河流域地表蒸散发尺度扩展方法研究
- 批准号:42301414
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
冲击作用下岩石多裂纹扩展及相互作用机制的加载率效应研究
- 批准号:52374086
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于基因密码子扩展技术的蛋白质探针构建及其在蛋白质氧化修饰中的研究
- 批准号:22307126
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
粗糙随机波动率模型的非仿射扩展及其应用研究
- 批准号:72301106
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
深部岩体真三轴智能CT实时观测裂纹扩展演化机理与三维重构理论研究
- 批准号:42307192
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: HCC: Small: RUI: Drawing from Life in Extended Reality: Advancing and Teaching Cross-Reality User Interfaces for Observational 3D Sketching
合作研究:HCC:小型:RUI:从扩展现实中的生活中汲取灵感:推进和教授用于观察 3D 草图绘制的跨现实用户界面
- 批准号:
2326998 - 财政年份:2023
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
Collaborative Research: Extended Family Support and Housing Stability of Youth Over Time
合作研究:随着时间的推移,扩大家庭支持和青少年住房稳定性
- 批准号:
2312179 - 财政年份:2023
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
Collaborative Research: Extended Family Support and Housing Stability of Youth Over Time
合作研究:随着时间的推移,扩大家庭支持和青少年住房稳定性
- 批准号:
2312178 - 财政年份:2023
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
Collaborative Research: HCC: Small: RUI: Drawing from Life in Extended Reality: Advancing and Teaching Cross-Reality User Interfaces for Observational 3D Sketching
合作研究:HCC:小型:RUI:从扩展现实中的生活中汲取灵感:推进和教授用于观察 3D 草图绘制的跨现实用户界面
- 批准号:
2326999 - 财政年份:2023
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
Collaborative Research: An Extended Reality Factory Innovation for Adaptive Problem-solving and Personalized Learning in Manufacturing Engineering
协作研究:制造工程中自适应问题解决和个性化学习的扩展现实工厂创新
- 批准号:
2302834 - 财政年份:2023
- 资助金额:
$ 47万 - 项目类别:
Standard Grant