FMitF: Track 1: Foundational Approaches for End-to-end Formal Verification of Computational Physics

FMitF:轨道 1:计算物理端到端形式验证的基础方法

基本信息

项目摘要

Numerical solutions of differential equations are widely used in analysis and design tasks in science and engineering. Examples include modeling climate change, discovering new materials, designing aircraft, and understanding the early universe. This simulation process, however, involves errors arising from a number of sources such as the finiteness of the numerical discretization, potential lack of convergence of algorithms, floating-point arithmetic, and sampling required to quantify uncertainties. The project's novelties are a new formalism to ensure a rigorous handle over errors and uncertainties in numerical methods, and computer-checked proofs of the formalization and applications. The project's impact is a better understanding and quantification of the errors involved in scientific computations, leading to a higher confidence in simulation-informed analysis and design of natural and engineered systems.The current state of the art in numerical analysis relies on paper proofs. In practical implementations, the impact of rounding error is seldom quantified, and even when quantified, not formalized. The interplay with the implementation (C code level and below) is also not clearly assessed. Practitioners use intuitive techniques such as convergence tests and the method of manufactured solutions to manually check the viability of a numerical algorithm. Since these techniques yield necessary yet not sufficient checks, scientists rely on their expertise to guide applications. This work offers the possibility of the user setting a tolerable error threshold, and being assured of achieving it via their implementation in several computational physics tasks. The idea of bounding errors asymptotically is uncommon in formal methods, and will inevitably lead to the development of tools and techniques to better handle asymptotic guarantees in interactive theorem proving. As a side effect, this will expand and consolidate formal-methods libraries handling real arithmetic and limits. This work is expected to be transformational for computational physics, and spur the development of a sub-field at the intersection of formal methods and computational science. The proofs are mechanically checked in an interactive theorem prover using a variety of mathematical results ranging from convergence of functions to floating-point arithmetic and C semantics, thereby using various theories in one proof of correctness. The project creates a new space of physical applications to formal methods researchers, and for computational physicists to derive value from formalizing their programs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
微分方程的数值解广泛应用于科学和工程的分析和设计任务中。例子包括模拟气候变化、发现新材料、设计飞机和了解早期宇宙。然而,该模拟过程涉及多种来源产生的误差,例如数值离散化的有限性、算法可能缺乏收敛性、浮点运算以及量化不确定性所需的采样。该项目的新颖之处在于一种新的形式主义,以确保严格处理数值方法中的错误和不确定性,以及形式化和应用的计算机检查证明。该项目的影响是更好地理解和量化科学计算中涉及的错误,从而提高对自然和工程系统的模拟分析和设计的信心。数值分析的当前技术水平依赖于纸质证明。在实际实现中,舍入误差的影响很少被量化,即使量化了,也没有形式化。与实现(C 代码级别及以下)的相互作用也没有明确评估。从业者使用直观的技术(例如收敛测试和制造解决方案的方法)来手动检查数值算法的可行性。由于这些技术产生必要但不充分的检查,科学家依靠他们的专业知识来指导应用。这项工作为用户提供了设置可容忍误差阈值的可能性,并确保通过在多个计算物理任务中实现来实现它。渐近限制误差的想法在形式方法中并不常见,并且将不可避免地导致工具和技术的发展,以更好地处理交互式定理证明中的渐近保证。作为副作用,这将扩展和巩固处理实际算术和限制的形式方法库。这项工作预计将给计算物理学带来变革,并刺激形式方法和计算科学交叉领域的发展。这些证明在交互式定理证明器中使用从函数收敛到浮点算术和 C 语义的各种数学结果进行机械检查,从而在一次正确性证明中使用各种理论。该项目为形式方法研究人员创造了物理应用的新空间,并为计算物理学家从形式化其程序中获取价值。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查进行评估,被认为值得支持标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jean-Baptiste Jeannin其他文献

Jean-Baptiste Jeannin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jean-Baptiste Jeannin', 18)}}的其他基金

SHF: Small: A Hybrid Synchronous Language for Verifiable Execution of Cyber-Physical Systems
SHF:Small:一种用于网络物理系统可验证执行的混合同步语言
  • 批准号:
    2348706
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Conference: Midwest Programming Languages Summits 2023, 2024, 2025
会议:2023、2024、2025 年中西部编程语言峰会
  • 批准号:
    2330888
  • 财政年份:
    2023
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant

相似国自然基金

基础学科拔尖学生发展及其影响机制的追踪研究
  • 批准号:
    72304231
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于活性追踪和代谢组学的蒙古扁桃抗肺纤维化的药效物质基础和作用机制研究
  • 批准号:
    81760782
  • 批准年份:
    2017
  • 资助金额:
    35.0 万元
  • 项目类别:
    地区科学基金项目
自闭谱系障碍退行现象的神经基础:6-48个月婴幼儿的比较和追踪
  • 批准号:
    81601533
  • 批准年份:
    2016
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
基于入血活性成分追踪和代谢组学研究走马胎抗肝癌的体内药效物质基础及其代谢机制
  • 批准号:
    81660642
  • 批准年份:
    2016
  • 资助金额:
    36.0 万元
  • 项目类别:
    地区科学基金项目
基于多维谱效和入血成分追踪研究山蜡梅叶的物质基础
  • 批准号:
    81560635
  • 批准年份:
    2015
  • 资助金额:
    39.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Collaborative Research: GEO OSE Track 2: Project Pythia and Pangeo: Building an inclusive geoscience community through accessible, reusable, and reproducible workflows
合作研究:GEO OSE 第 2 轨道:Pythia 和 Pangeo 项目:通过可访问、可重用和可重复的工作流程构建包容性的地球科学社区
  • 批准号:
    2324302
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Collaborative Research: GEO OSE Track 2: Developing CI-enabled collaborative workflows to integrate data for the SZ4D (Subduction Zones in Four Dimensions) community
协作研究:GEO OSE 轨道 2:开发支持 CI 的协作工作流程以集成 SZ4D(四维俯冲带)社区的数据
  • 批准号:
    2324711
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Collaborative Research: GEO OSE Track 1: Facilitating Reproducible Open GeoScience
合作研究:GEO OSE 第 1 轨道:促进可重复的开放地球科学
  • 批准号:
    2324732
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Convergence Accelerator Track M: Bio-Inspired Design of Robot Hands for Use-Driven Dexterity
融合加速器轨道 M:机器人手的仿生设计,实现使用驱动的灵活性
  • 批准号:
    2344109
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track K: Equity in water information for community capacity building
NSF 融合加速器轨道 K:社区能力建设的水信息公平
  • 批准号:
    2344375
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了