Liquid-Metal-Printed, Modulation-Doped 2D Metal Oxide Transistors

液态金属印刷、调制掺杂 2D 金属氧化物晶体管

基本信息

  • 批准号:
    2219991
  • 负责人:
  • 金额:
    $ 41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Liquid Metal Printed Transistors Enhanced with Multilayer 2D Semiconducting Oxide HeterostructuresUltrathin metal oxide semiconductors have exceptional optical, mechanical, and electronic properties that could enable emerging flexible electronics, from resorbable biosensors to low-power displays. Engineering these devices for specific applications requires precise nanoscale control of the transport of electrons for large area devices and systems. However, depositing atomically thin oxides at a large scale while controlling their electrical properties remains technologically challenging. This project overcomes those limitations by leveraging a new form of 2D oxide semiconductors spontaneously formed by native oxidation of liquid gallium and indium to fabricate highly conductive and ultratransparent nanosheets just 2-3 nm thick. The scientific question driving this study is how to precisely control electronic transport in transistors utilizing 2D oxide channels. Our approach involves electrostatic engineering of heterostructures of InOx and GaOx as well as modeling of the density of electronic defects in these channel layers. This work also implements finite element simulations to design low-voltage, high-performance devices that can lead to integration into biomedical sensors, lightweight displays, and other systems that benefit from low-temperature fabrication on flexible polymer substrates. The research plan ties in with planned educational outreach and inclusivity efforts. We build on past efforts, providing engaging research opportunities for a diverse set of undergraduates and graduates while regularly assessing the downstream impact. The planned recorded remote laboratories based on the science of conductivity of liquid metals will deliver content for powering remote learning opportunities for K-12 and undergraduate engineering education. The impact of these activities will be to broaden participation in STEM and strengthen the engineering workforce.The primary goal of this project is to develop a new paradigm of two-dimensional (2D) metal oxide transistors enhanced through quantum modulation doping. Towards this end, this work develops a fundamental understanding of how heterointerfaces can be engineered to enhance electronic transport in channels consisting of heterostructures of quantum confined 2-3 nm thick 2D wide bandgap oxide semiconductors. This strategy can induce 2D electron gas formation and band-like transport characteristics such as temperature-independent mobility. However, the fundamental gap limiting applications of these phenomena is the connection between nanoscale electrostatic interface engineering and electronic transport in oxide semiconductors. A fundamental innovation in this program is to utilize liquid metal printing to fabricate vertically stacked heterostructures channels in which high-mobility, efficient electron transport is produced by the interfacial conduction band energy offset (ΔEc) of 2D InOx and GaOx. Detailed device characterization measurements probe the hypothesis that this modulation doping of 2D heterointerfaces can engineer band-like transport by passivating interface traps and inducing bulk electron accumulation. A complementary goal is to develop TCAD simulations based on density of states data to design electrostatically optimal multilayer architectures, identify the impact of high-k dielectric integration, and design transistors for low-voltage unipolar logic circuits. This combination of experiments and simulations can provide the fundamental device engineering knowledge needed to leverage this scalable fabrication method for various flexible electronicsThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
采用多层二维半导体氧化物异质结构增强的液态金属印刷晶体管超薄金属氧化物半导体具有卓越的光学、机械和电子特性,可以实现从可吸收生物传感器到低功耗显示器的新兴柔性电子产品,为特定应用设计这些设备需要精确的纳米级控制。然而,大规模沉积原子薄氧化物同时控制其电性能仍然存在技术问题。该项目克服了这些限制,利用液态镓和铟的自然氧化自发形成的新型二维氧化物半导体来制造厚度仅为 2-3 nm 的高导电性和超透明纳米片。推动这项研究的科学问题是如何精确地实现这一目标。利用二维氧化物通道控制晶体管中的电子传输我们的方法涉及 InOx 和 GaOx 异质结构的静电工程以及这些通道层中电子缺陷密度的建模。这项工作还实现了有限元模拟来设计低电压、高性能设备,这些设备可以集成到生物医学传感器、轻型显示器和其他受益于柔性聚合物基板上的低温制造的系统中。我们以过去的努力为基础,为不同的本科生和研究生提供研究机会,同时定期评估基于液态金属导电性科学的计划记录的远程实验室。为 K-12 和本科生工程教育提供远程学习机会。这些活动的影响将是扩大 STEM 的参与并加强工程人员队伍。该项目的主要目标是开发二维 (2D) 的新范式。为此,这项工作对如何设计异质界面以增强由量子限制的 2-3 nm 厚二维宽带隙氧化物异质结构组成的通道中的电子传输有了基本的了解。这种策略可以诱导二维电子气的形成和带状传输特性,例如与温度无关的迁移率,但是,这些现象的根本限制应用是纳米级静电界面工程和氧化物半导体中的电子传输创新之间的联系。该计划是利用液态金属印刷来制造垂直堆叠的异质结构通道,其中通过二维InOx和GaOx的界面导带能量偏移(ΔEc)产生高迁移率、高效的电子传输。详细的器件表征测量探讨了这样的假设:二维异质界面的调制掺杂可以通过钝化界面陷阱和诱导体电子积累来设计带状传输,一个补充目标是开发基于态密度数据的 TCAD 模拟,以设计静电最佳的多层架构。 ,确定高 k 电介质集成的影响,并为低压单极逻辑电路设计晶体管。这种实验和模拟的结合可以提供利用这一点所需的基本器件工程知识。用于各种柔性电子产品的可扩展制造方法该奖项反映了 NSF 的法定使命,并且通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Continuous Liquid Metal Printing for Rapid Metal Oxide TFT Integration
用于快速金属氧化物 TFT 集成的连续液态金属打印
Heterojunction Transistors Printed via Instantaneous Oxidation of Liquid Metals
通过液态金属瞬时氧化打印异质结晶体管
  • DOI:
    10.1021/acs.nanolett.2c04555
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    Hamlin, Andrew B.;Agnew, Simon A.;Bonner, Justin C.;Hsu, Julia W.;Scheideler, William J.
  • 通讯作者:
    Scheideler, William J.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Scheideler其他文献

Contact Thickness Effects in Bottom-Contact Coplanar Organic Field-Effect Transistors
底部接触共面有机场效应晶体管中的接触厚度效应
  • DOI:
    10.1109/led.2013.2244059
  • 发表时间:
    2013-03-07
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Yong Xu;William Scheideler;Chuan Liu;Francis Balestra;G. Ghibaudo;K. Tsukagoshi
  • 通讯作者:
    K. Tsukagoshi

William Scheideler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Scheideler', 18)}}的其他基金

EPM: Engineering Transparent Conducting Superlattices from Liquid Metal Printed 2D Oxides
EPM:利用液态金属打印的二维氧化物设计透明导电超晶格
  • 批准号:
    2202501
  • 财政年份:
    2022
  • 资助金额:
    $ 41万
  • 项目类别:
    Standard Grant

相似国自然基金

3D纳米打印复合金属硫化物阵列反应器光催化CO2还原制C2研究
  • 批准号:
    22378174
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
聚合物自模板策略可控构筑界面耦合金属-碳复合材料及在3D打印微型电容器中的性能研究
  • 批准号:
    52303342
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
难互溶异质金属嫁接打印关键元素多尺度有序阻隔机制研究
  • 批准号:
    52305148
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
3D打印毫米波宽带圆极化金属反射阵与透射阵天线研究
  • 批准号:
    62301225
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
3D打印纤维素基材料助力高能量密度全固态锂金属电池
  • 批准号:
    22208039
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

SBIR Phase I: CAS: Biomimetic 3D Printed Metal Mold to Mass Produce Dry-Pressed, Modular, Biophilic Concrete Reef Substrate
SBIR 第一阶段:CAS:仿生 3D 打印金属模具,用于批量生产干压、模块化、亲生物混凝土珊瑚礁基底
  • 批准号:
    2334667
  • 财政年份:
    2024
  • 资助金额:
    $ 41万
  • 项目类别:
    Standard Grant
CAREER: 3D Printed Carbon-Metal Nanohybrid Aerogels for Highly Efficient Adsorptive/Catalytic Removal of PFASs
职业:3D 打印碳金属纳米杂化气凝胶,用于高效吸附/催化去除 PFAS
  • 批准号:
    2331082
  • 财政年份:
    2023
  • 资助金额:
    $ 41万
  • 项目类别:
    Continuing Grant
3D printed foundry hollowware - step change improvement to metal casting
3D 打印铸造空心器 - 金属铸造的逐步改进
  • 批准号:
    10045757
  • 财政年份:
    2023
  • 资助金额:
    $ 41万
  • 项目类别:
    Collaborative R&D
Ultra-Low-Cost Perovskite Solar Cells based on Printed Inorganic Nanoporous Electrodes
基于印刷无机纳米多孔电极的超低成本钙钛矿太阳能电池
  • 批准号:
    22KJ2631
  • 财政年份:
    2023
  • 资助金额:
    $ 41万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Community Engagement Core
社区参与核心
  • 批准号:
    10354276
  • 财政年份:
    2022
  • 资助金额:
    $ 41万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了