The Frobenius action on curves and abelian varieties

曲线和阿贝尔簇上的弗罗贝尼乌斯作用

基本信息

  • 批准号:
    2302511
  • 负责人:
  • 金额:
    $ 18.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

This research project aims to study arithmetic properties of geometric objects such as curves and abelian varieties defined over different types of fields such as number fields, finite fields, global function fields and their extensions. Instead of studying each individual object one at a time, the principal investigator and her collaborators will take these objects and pack them into various types of families, and then use the geometry of the spaces parameterizing these families to deduce properties of the original objects. The main question that the principal investigator and her collaborators aim to answer is to estimate the number of special objects in these families and how often or rarely they occur. These special objects present useful and important properties making them central topics of research in many areas and directions in number theory and arithmetic geometry. Some of the target results will generalize important prior work of other mathematicians. The research program will provide many projects suitable for undergraduate and graduate students research which the principal investigator will supervise.There are two main directions the principal investigator and her collaborators will pursue with the projects, namely, to study the p-divisible groups for families of high dimensional abelian varieties and to study the structure of the ideal class groups of certain families of global function fields. There are different types of families in the research projects, such as the reductions of an abelian variety defined over a global field parameterized by the places of the base field, algebraic families of abelian varieties parameterized by a Shimura variety and sets of global function fields ordered by their discriminant. Specifically, one project aims to prove the set of ordinary primes in the reduction of certain abelian varieties with nontrivial endomorphism groups has density 1. In the opposite direction, another project aims to construct infinitely many primes at which these abelian varieties admit basic reduction, generalizing the work of Elkies’ on the infinitude of supersingular primes for elliptic curves. For ideal class group, the principal investigator and her collaborators will use Galois cohomology and computational tools to predict and prove properties of the distribution of l-torsion classes for degree l extensions of the rational function field.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究项目旨在研究在不同类型的LDS,例如数字字段,有限字段,全局功能字段和扩展方面定义的几何对象的算术特性,例如曲线和Abelian品种。调查员及其合作者将把物体带入各种类型的家庭,而空间的几何形状将原始对象的theduce属性参数化。这些特殊的物体和这些特殊的物体和重要的特性使它们在许多领域的研究中的主要主题,而算术几何学的一些目标将推广到重要的数学家工作。 E学生研究校长将监督的研究是主要研究者及其合作者在项目中追求的两个主要方向功能领域。在基本场所的全球领域定义的研究项目中,代数家族品种的位置是由光滑的全球田地范围的参数。在某些具有非平凡性内态群体的Abelian品种中,普通素数的集合具有密度1。在相反的方向上,另一个项目旨在限制Thelian品种接受基本还原曲线的许多素数。该奖项反映了NSF的任务,并通过使用Toundation的知识分子优点和更广泛的影响审查标准来评估,这反映了NSF的任务,这反映了NSF的任务值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wanlin Li其他文献

L$^{3}$ F-TOUCH: A Wireless GelSight With Decoupled Tactile and Three-Axis Force Sensing
L$^{3}$ F-TOUCH:具有解耦触觉和三轴力感应的无线 GelSight
  • DOI:
    10.1109/lra.2023.3292575
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Wanlin Li;Meng;Jiarui Li;Yao Su;Devesh K. Jha;Xinyuan Qian;K. Althoefer;Hangxin Liu
  • 通讯作者:
    Hangxin Liu
Abelian varieties of prescribed order over finite fields
有限域上规定阶的阿贝尔簇
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. V. Bommel;Edgar Costa;Wanlin Li;B. Poonen;Alexander D. Smith
  • 通讯作者:
    Alexander D. Smith
A Miniaturised Camera-based Multi-Modal Tactile Sensor
基于小型相机的多模态触觉传感器
Hope and anxiety: The study of female embodied experience with assisted reproductive technology
希望与焦虑:女性辅助生殖技术的具体体验研究
  • DOI:
    10.1177/2057150x211002982
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chengpu Yu;Wanlin Li;Mingfen Deng
  • 通讯作者:
    Mingfen Deng
Criminisi Algorithm Applied to a GelSight Fingertip Sensor for Multi-modality Perception
Criminisi 算法应用于 GelSight 指尖传感器以实现多模态感知

Wanlin Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wanlin Li', 18)}}的其他基金

Conference: Comparative Prime Number Theory Symposium
会议:比较素数论研讨会
  • 批准号:
    2411537
  • 财政年份:
    2024
  • 资助金额:
    $ 18.89万
  • 项目类别:
    Standard Grant

相似国自然基金

爬行动物ZW性染色体起源演化机制及对物种形成的作用研究—以沙蜥属(鬣蜥科)为模型
  • 批准号:
    32300356
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
行动者网络视角下非遗经济化的多尺度空间过程与机制
  • 批准号:
    42371248
  • 批准年份:
    2023
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目
“双碳”目标下低碳消费多阶段促进策略研究:风险沟通、调节匹配与行动线索
  • 批准号:
    72372058
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
野生动物保护与社区发展中多元行动者的地方协商:过程、机制与效应
  • 批准号:
    42371227
  • 批准年份:
    2023
  • 资助金额:
    47 万元
  • 项目类别:
    面上项目
不对称有机催化平行动力学拆分反应研究及其在手性农药、配体和天然产物合成中的应用
  • 批准号:
    22371057
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Conference: Transforming Trajectories for Women of Color in Tech: A Meeting Series to Develop a Systemic Action Plan
会议:改变有色人种女性在科技领域的轨迹:制定系统行动计划的会议系列
  • 批准号:
    2333305
  • 财政年份:
    2024
  • 资助金额:
    $ 18.89万
  • 项目类别:
    Standard Grant
Improving efficacy of biopesticides through understanding mode of action
通过了解作用方式提高生物农药的功效
  • 批准号:
    IE230100103
  • 财政年份:
    2024
  • 资助金额:
    $ 18.89万
  • 项目类别:
    Early Career Industry Fellowships
GPR35: mechanisms of action and agonism as a potential therapeutic strategy for non-alcoholic fatty liver diseases
GPR35:作为非酒精性脂肪肝疾病潜在治疗策略的作用和激动机制
  • 批准号:
    MR/X008827/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.89万
  • 项目类别:
    Research Grant
Coordination of Action in Distributed, but Unequal, Bimanual Tasks
协调分布式但不平等的双手任务中的行动
  • 批准号:
    2341539
  • 财政年份:
    2024
  • 资助金额:
    $ 18.89万
  • 项目类别:
    Standard Grant
An innovative, AI-driven application that helps users assess/action information pollution for social media content.
一款创新的人工智能驱动应用程序,可帮助用户评估/消除社交媒体内容的信息污染。
  • 批准号:
    10100049
  • 财政年份:
    2024
  • 资助金额:
    $ 18.89万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了