Representation Theory Meets Computational Algebra and Complexity Theory
表示论遇见计算代数和复杂性理论
基本信息
- 批准号:2302375
- 负责人:
- 金额:$ 10.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The goal of this project is to use mathematical tools to tackle computational and applied mathematical problems. The main themes are (1) Systems of Polynomial Equations, (2) Computer Science and Computational Complexity. Systems of polynomial equations can be thought of as describing the dependence relations between physical quantities in some models. The solution set of them describes the geometric shape of the model. Natural phenomena, and hence the model describing them, often come equipped with a rich symmetry. Hence it is natural to use symmetry-based methods to study them. The proposed research will lead to a better understanding of the geometry as well as the utility of the model. A second theme of the project is the complexity of matrix multiplication (a matrix is a rectangular array of numbers). Finding efficient ways to multiply matrices is the topic of a subfield of Computer Science known as complexity theory. In 1968, Strassen discovered that the widely used algorithm for matrix multiplication which was assumed to be the best possible, is in fact not optimal. Since then, there has been intense research in both determining just how efficiently matrices may be multiplied and determining the limits of how much Strassen's algorithm can be improved. The PI proposes to use modern mathematical techniques to tackle those problems. This project will have a substantial broader impact through the development of new software for the open-source computer algebra system Macaulay2, and through the PI’s interest in broadening participation in mathematical research.The proposal involves several main themes: Weyman-Kempf geometric techniques, syzygies and minimal free resolutions, secant varieties and the study of tensor ranks. The first goal is to find new examples and analyze existing examples to extend Weyman-Kempf geometric techniques to study non-normal varieties. The second goal is the study of nilpotent orbit closures and determinantal thickenings. The PI will use technical tools such as spectral sequence and Lie superalgebra representations to compute numerical and homological invariants of related varieties. The third topic is the computation of different tensor ranks and their application to matrix multiplication complexity. Using tools from modern algebraic geometry such as deformation theory, the PI will tackle a number of longstanding open conjectures.This project is jointly funded by the Algebra and Number Theory program in the Division of Mathematical sciences, and by the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的目标是使用数学工具来解决计算和应用数学问题,主要主题是(1)多项式方程组,(2)计算机科学和计算复杂性可以被认为是描述多项式方程组。一些模型中物理量之间的依赖关系描述了模型的几何形状,因此描述它们的模型通常具有丰富的对称性,因此很自然地使用基于对称性的方法。研究它们。拟议的研究将有助于更好地理解几何形状以及模型的实用性。该项目的第二个主题是矩阵乘法的复杂性(矩阵是数字的矩形数组)。矩阵是计算机科学的一个子领域,称为复杂性理论。1968 年,施特拉森发现,广泛使用的矩阵乘法算法被认为是最好的,但实际上并不是最优的。研究确定如何可以有效地相乘矩阵,并确定 Strassen 算法可以改进的极限。PI 建议使用现代数学技术来解决这些问题,该项目将通过开发新的开源软件产生更广泛的影响。计算机代数系统Macaulay2,并通过PI对扩大数学研究参与的兴趣。该提案涉及几个主题:Weyman-Kempf几何技术、syzygies和最小自由分辨率、割线簇第一个目标是寻找新的例子并分析现有的例子,以扩展 Weyman-Kempf 几何技术来研究非正态簇。第二个目标是研究幂零轨道闭包和行列增厚。使用谱序列和李超代数表示等技术工具来计算相关簇的数值和同调不变量。第三个主题是不同张量秩的计算及其在矩阵乘法复杂性中的应用。从变形理论等现代代数几何中,PI将解决一些长期存在的开放猜想。该项目由数学科学部的代数和数论项目以及刺激竞争性研究既定项目(EPSCoR)共同资助)。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hang Huang其他文献
XIDEN: crosstalk target identification framework
XIDEN:串扰目标识别框架
- DOI:
10.1109/test.2002.1041780 - 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
Shahin Nazarian;Hang Huang;S. Natarajan;S. Gupta;M. Breuer - 通讯作者:
M. Breuer
Mitigation Methods for Passive Intermodulation Distortion in Circuit Systems Using Signal Compensation
使用信号补偿的电路系统中无源互调失真的缓解方法
- DOI:
10.1109/lmwc.2019.2957989 - 发表时间:
2020-02 - 期刊:
- 影响因子:3
- 作者:
Qiuyan Jin;Jinchun Gao;Hang Huang;Lingyu Bi - 通讯作者:
Lingyu Bi
Characterizing and optimizing Kernel resource isolation for containers
表征和优化容器的内核资源隔离
- DOI:
10.1016/j.future.2022.11.018 - 发表时间:
2022-11 - 期刊:
- 影响因子:0
- 作者:
Kun Wang;Song Wu;Kun Suo;Yijie Liu;Hang Huang;Zhuo Huang;Hai Jin - 通讯作者:
Hai Jin
On Linear spaces of of matrices bounded rank
关于矩阵有界秩的线性空间
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Hang Huang;J. Landsberg - 通讯作者:
J. Landsberg
Equations of Kalman varieties
卡尔曼簇方程
- DOI:
10.1090/proc/15351 - 发表时间:
2017 - 期刊:
- 影响因子:1
- 作者:
Hang Huang - 通讯作者:
Hang Huang
Hang Huang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
拓扑声子材料中不满足no-go定理外尔声子的理论和计算研究
- 批准号:12147113
- 批准年份:2021
- 资助金额:18 万元
- 项目类别:专项基金项目
员工职场行为基础理论及实证研究方法的发展:基于“心理需求满足”视角的研究
- 批准号:71922011
- 批准年份:2019
- 资助金额:130 万元
- 项目类别:优秀青年科学基金项目
结合抽象解释与可满足性模理论的数值程序分析
- 批准号:61872445
- 批准年份:2018
- 资助金额:61.0 万元
- 项目类别:面上项目
线形时态逻辑的可满足性理论与应用研究
- 批准号:61572197
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
基于使用与满足理论的社交媒体使用机理研究:从采纳到持续使用的行为转变
- 批准号:71403301
- 批准年份:2014
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Balanced Allocation Meets Queueing Theory
平衡分配与排队理论的结合
- 批准号:
EP/Y032691/1 - 财政年份:2024
- 资助金额:
$ 10.8万 - 项目类别:
Research Grant
Decoding a black hole: quantum information theory meets quantum gravity
解码黑洞:量子信息论遇上量子引力
- 批准号:
RGPIN-2018-04502 - 财政年份:2022
- 资助金额:
$ 10.8万 - 项目类别:
Discovery Grants Program - Individual
Optimal Tax Policy Meets Modern Labour Supply Theory
最优税收政策符合现代劳动力供给理论
- 批准号:
DP210103319 - 财政年份:2021
- 资助金额:
$ 10.8万 - 项目类别:
Discovery Projects
Decoding a black hole: quantum information theory meets quantum gravity
解码黑洞:量子信息论遇上量子引力
- 批准号:
RGPIN-2018-04502 - 财政年份:2021
- 资助金额:
$ 10.8万 - 项目类别:
Discovery Grants Program - Individual
Decoding a black hole: quantum information theory meets quantum gravity
解码黑洞:量子信息论遇上量子引力
- 批准号:
RGPIN-2018-04502 - 财政年份:2020
- 资助金额:
$ 10.8万 - 项目类别:
Discovery Grants Program - Individual