Representation Theory Meets Computational Algebra and Complexity Theory

表示论遇见计算代数和复杂性理论

基本信息

  • 批准号:
    2302375
  • 负责人:
  • 金额:
    $ 10.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

The goal of this project is to use mathematical tools to tackle computational and applied mathematical problems. The main themes are (1) Systems of Polynomial Equations, (2) Computer Science and Computational Complexity. Systems of polynomial equations can be thought of as describing the dependence relations between physical quantities in some models. The solution set of them describes the geometric shape of the model. Natural phenomena, and hence the model describing them, often come equipped with a rich symmetry. Hence it is natural to use symmetry-based methods to study them. The proposed research will lead to a better understanding of the geometry as well as the utility of the model. A second theme of the project is the complexity of matrix multiplication (a matrix is a rectangular array of numbers). Finding efficient ways to multiply matrices is the topic of a subfield of Computer Science known as complexity theory. In 1968, Strassen discovered that the widely used algorithm for matrix multiplication which was assumed to be the best possible, is in fact not optimal. Since then, there has been intense research in both determining just how efficiently matrices may be multiplied and determining the limits of how much Strassen's algorithm can be improved. The PI proposes to use modern mathematical techniques to tackle those problems. This project will have a substantial broader impact through the development of new software for the open-source computer algebra system Macaulay2, and through the PI’s interest in broadening participation in mathematical research.The proposal involves several main themes: Weyman-Kempf geometric techniques, syzygies and minimal free resolutions, secant varieties and the study of tensor ranks. The first goal is to find new examples and analyze existing examples to extend Weyman-Kempf geometric techniques to study non-normal varieties. The second goal is the study of nilpotent orbit closures and determinantal thickenings. The PI will use technical tools such as spectral sequence and Lie superalgebra representations to compute numerical and homological invariants of related varieties. The third topic is the computation of different tensor ranks and their application to matrix multiplication complexity. Using tools from modern algebraic geometry such as deformation theory, the PI will tackle a number of longstanding open conjectures.This project is jointly funded by the Algebra and Number Theory program in the Division of Mathematical sciences, and by the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的目的是使用数学工具来解决计算和应用数学问题。主要主题是(1)多项式方程的系统,(2)计算机科学和计算复杂性。多项式方程系统可以被认为是描述某些模型中物理量之间的依赖关系。它们的解决方案集描述了模型的几何形状。自然现象,因此描述它们的模型通常配备了丰富的对称性。因此,使用基于对称性的方法来研究它们是很自然的。拟议的研究将使人们更好地了解该模型的几何形状和效用。该项目的第二个主题是矩阵乘法的复杂性(矩阵是数字的矩形阵列)。寻找有效的方法来繁殖材料是计算机科学子场的主题,称为复杂性理论。 1968年,斯特拉森(Strassen)发现,被认为是最好的矩阵乘法算法,实际上并不是最佳的。从那时起,就一直在确定如何有效地乘以乘以乘积的限制,并确定可以改善多少Strassen算法的限制。 PI建议使用现代数学技术来解决这些问题。 This project will have a substantial broader impact through the development of new software for the open-source computer algebra system Macaulay2, and through the PI’s interest in broadening participation in mathematical research.The proposal involves several main themes: Weyman-Kempf geometric techniques, syzygies and minimal free resolutions, secant varieties and the study of tensor ranks.第一个目标是找到新的例子并分析现有示例,以扩展Weyman-Kempf几何技术来研究非正常品种。第二个目标是研究Nilpotent轨道闭合和确定的增厚。 PI将使用诸如光谱序列和谎言超级代表等技术工具来计算相关变化的数值和同源不变。第三个主题是计算不同张量等级及其在矩阵乘法复杂性中的应用。使用现代代数几何形状(例如变形理论)的工具,PI将解决许多长期的开放猜想。该项目由数学科学部的代数和数字理论计划共同资助,并通过既定的计划以及既定的计划来刺激竞争性研究(EPSCOR),以反映了NSF的构建范围。影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hang Huang其他文献

Preparation and identification of isoquinoline alkaloids with ATP citrate lyase inhibitory activity from <em>Dactylicapnos scandens</em>
  • DOI:
    10.1016/j.fitote.2022.105397
  • 发表时间:
    2023-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Hui Jiang;Tao Hou;Yan Han;Shu-Bin Lu;Lei Liu;Ding-Xiang Li;Yun-Hui Zhu;Hang Huang;Wen-Jie Li;Xing-ya Xue;Yan-Fang Liu;Xin-Miao Liang
  • 通讯作者:
    Xin-Miao Liang
XIDEN: crosstalk target identification framework
XIDEN:串扰目标识别框架
Mitigation Methods for Passive Intermodulation Distortion in Circuit Systems Using Signal Compensation
使用信号补偿的电路系统中无源互调失真的缓解方法
Characterizing and optimizing Kernel resource isolation for containers
表征和优化容器的内核资源隔离
  • DOI:
    10.1016/j.future.2022.11.018
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kun Wang;Song Wu;Kun Suo;Yijie Liu;Hang Huang;Zhuo Huang;Hai Jin
  • 通讯作者:
    Hai Jin
On Linear spaces of of matrices bounded rank
关于矩阵有界秩的线性空间
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hang Huang;J. Landsberg
  • 通讯作者:
    J. Landsberg

Hang Huang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于热电力协同调控的食管穿越式适形热物理治疗理论与方法研究
  • 批准号:
    52306105
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
代数K理论、代数数论及其在编码密码中的应用
  • 批准号:
    12371035
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
面向六自由度交互的沉浸式视频感知编码理论与方法研究
  • 批准号:
    62371081
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
一类双色散非局部波动方程初值问题的理论研究
  • 批准号:
    12301272
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
物理-数据混合驱动的复杂曲面多模态视觉检测理论与方法
  • 批准号:
    52375516
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Balanced Allocation Meets Queueing Theory
平衡分配与排队理论的结合
  • 批准号:
    EP/Y032691/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.8万
  • 项目类别:
    Research Grant
Decoding a black hole: quantum information theory meets quantum gravity
解码黑洞:量子信息论遇上量子引力
  • 批准号:
    RGPIN-2018-04502
  • 财政年份:
    2022
  • 资助金额:
    $ 10.8万
  • 项目类别:
    Discovery Grants Program - Individual
Optimal Tax Policy Meets Modern Labour Supply Theory
最优税收政策符合现代劳动力供给理论
  • 批准号:
    DP210103319
  • 财政年份:
    2021
  • 资助金额:
    $ 10.8万
  • 项目类别:
    Discovery Projects
Decoding a black hole: quantum information theory meets quantum gravity
解码黑洞:量子信息论遇上量子引力
  • 批准号:
    RGPIN-2018-04502
  • 财政年份:
    2021
  • 资助金额:
    $ 10.8万
  • 项目类别:
    Discovery Grants Program - Individual
Decoding a black hole: quantum information theory meets quantum gravity
解码黑洞:量子信息论遇上量子引力
  • 批准号:
    RGPIN-2018-04502
  • 财政年份:
    2020
  • 资助金额:
    $ 10.8万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了