Rational points on modular curves, and the geometry of arithmetic statistics
模曲线上的有理点和算术统计的几何
基本信息
- 批准号:2302356
- 负责人:
- 金额:$ 21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The project will explore various topics within number theory and algebraic geometry. These are ancient areas of inquiry rooted in very basic questions about solving polynomial equations and motivated by concrete applications. For example, the Greek astronomer Apollonius of Perga (240-190BC) developed his theory of conics and ellipses to facilitate the study of Astronomy. Questions about numbers and shapes still remain central to the frontier of mathematical research, and this project has a particular emphasis on using modern technical tools to study classical problems. The project includes problems accessible to undergraduates and graduate students, and includes efforts including substantial student focused conference organization (such as the Arizona Winter School).Mazur's torsion and isogeny theorems are cornerstones of arithmetic geometry, and arithmetic statistics is an old field full of classical problems. In recent years both areas have enjoyed an influx of new ideas and progress, especially via ideas from the geometry of numbers, moduli spaces, algebraic topology, computational number theory, and more. In particular, this project will study Mazur's ``Program B'', higher degree torsion on elliptic curves, a generalization of the Batyrev--Manin and Malle conjectures to stacks (in a sense, an interpolation of these conjectures), and non-abelian (and infinite degree) Cohen--Lenstra heuristics (and, in the function field case, theorems). Each of these sub-projects will introduced new methods and toolkits/frameworks that are expected to be broadly useful, and suggests numerous open problems and new directions for research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将探讨数字理论和代数几何形状中的各种主题。这些是古老的探究领域,植根于有关解决多项式方程的非常基本的问题,并由具体应用激励。例如,佩尔加(240-190BC)的希腊天文学家阿波罗尼乌斯(Apollonius)开发了他的锥形和椭圆理论,以促进天文学研究。关于数字和形状的问题仍然是数学研究前沿的核心,并且该项目特别强调使用现代技术工具来研究经典问题。该项目包括在本科生和研究生方面可以解决的问题,包括大量以学生为中心的会议组织(例如亚利桑那州冬季学校)的努力。Mazur的扭转和同学理论是算术几何的基石,算术统计数据是一个充满经典问题的旧领域。近年来,这两个领域都涌入了新的思想和进步,尤其是通过数字,模量空间,代数拓扑,计算数理论等的思想。 In particular, this project will study Mazur's ``Program B'', higher degree torsion on elliptic curves, a generalization of the Batyrev--Manin and Malle conjectures to stacks (in a sense, an interpolation of these conjectures), and non-abelian (and infinite degree) Cohen--Lenstra heuristics (and, in the function field case, theorems).这些子项目中的每一个都将引入新的方法和工具包和框架,这些方法和工具包/框架有望广泛有用,并提出了许多开放问题和新的研究方向。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的审查标准来通过评估来获得支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Zureick-Brown其他文献
David Zureick-Brown的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Zureick-Brown', 18)}}的其他基金
CAREER: Arithmetic, Algebraic, and Non-Archimedean Geometry
职业:算术、代数和非阿基米德几何
- 批准号:
1555048 - 财政年份:2016
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
相似国自然基金
点传递超图的同构和连通性问题
- 批准号:12301446
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
双位点金属氧化物催化剂原子级界面调控及锌-空气电池性能研究
- 批准号:22305010
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
位点特异性的糖肽鉴定软件的升级与运用
- 批准号:32371334
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
RNF31通过厚壁菌代谢产物3-氧代胆碱酸调控RORγ信号轴抑制Th17细胞分化—溃疡性结肠炎干预新靶点
- 批准号:82360112
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
RIMKLA通过激活BHMT1苏氨酸45位点磷酸化改善脂肪肝同型半胱氨酸和脂质代谢紊乱的机制研究
- 批准号:82300957
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Modular linear differential equations and vertex operator algebras
模线性微分方程和顶点算子代数
- 批准号:
22K03249 - 财政年份:2022
- 资助金额:
$ 21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Exceptional Points on Modular Curves
职业生涯:模曲线上的特殊点
- 批准号:
2145270 - 财政年份:2022
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
CM points on modular curves of genus zero
零亏格模曲线上的 CM 点
- 批准号:
569431-2022 - 财政年份:2022
- 资助金额:
$ 21万 - 项目类别:
Postgraduate Scholarships - Doctoral
Fourier coefficients and zeros of modular forms
模形式的傅立叶系数和零点
- 批准号:
19F19318 - 财政年份:2019
- 资助金额:
$ 21万 - 项目类别:
Grant-in-Aid for JSPS Fellows
A function-field analogue of the Gauss hypergeometric function arising from Drinfeld modular curves over finite fields
由有限域上的 Drinfeld 模曲线产生的高斯超几何函数的函数场模拟
- 批准号:
19K03400 - 财政年份:2019
- 资助金额:
$ 21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)