New perspectives in combinatorial algebra

组合代数的新视角

基本信息

  • 批准号:
    2302149
  • 负责人:
  • 金额:
    $ 34.45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

The purpose of this project is to study some classical topics in combinatorics and algebra from the perspective of new modern techniques. The PI is interested in algebraic computations such as the equations that characterize a space, and how they interact with seemingly unrelated computations. The project is broken into three subprojects with a different theme. These include the study of the space of polynomials with repeated roots, super homogeneous spaces, and the use of Lie algebras in representation stability theory. The commonality among them involves viewing specific algebraic computations from a different angle to get a different algebraic computation that surprisingly is much more tractable. This expands on previous work of the PI and his collaborators, and the intention is to take it into new directions. The project will also provide opportunities for training graduate students.The PI will work on three main topics sitting between representation theory and commutative algebra, with applications flowing between these subjects in both directions. The first topic concerns computing the equations and syzygies of multiple root loci in spaces of binary forms. The PI plans to study them all together as the degree of the binary forms grows using certain monad-type constructions. Recently, this was successfully used to give a new proof of the generic Green conjecture on canonically embedded projective curves. The second topic concerns the calculation of syzygies of determinantal-like varieties via their connection to the coherent cohomology of super homogeneous spaces and super analogues of the classical Grothendieck-Springer resolution. This is motivated by the existence of unexpected actions of Lie superalgebras on these syzygies and, in fact, offers a conceptual explanation for their existence. On the other hand, it also offers a new strategy to find super analogues of the Borel-Weil-Bott theorem, which the PI plans to explore. The third topic concerns curried algebras; a concept recently introduced by the PI in collaboration with Andrew Snowden. This provides a deep connection between representation stability theory and constructions in Lie theory such as the Bernstein-Gelfand-Gelfand category O. The PI plans to import these techniques from Lie theory to find and prove new structural results in representation stability and its applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的目的是从新的现代技术的角度研究组合和代数的一些古典主题。 PI对代数计算感兴趣,例如表征空间的方程式以及它们如何与看似无关的计算相互作用。该项目分为具有不同主题的三个子弹。其中包括研究具有重复根,超均匀空间的多项式空间,以及在表示稳定理论中使用Lie代数。它们之间的共同点涉及从不同角度查看特定的代数计算,以获得不同的代数计算,令人惊讶的是,这些计算更容易进行。这扩展了PI及其合作者的先前工作,其目的是将其带入新的方向。该项目还将为培训研究生提供机会。PI将在代表理论和交换代数之间进行三个主要主题,并在这两个方向上进行这些主题之间的应用。第一个主题涉及计算二进制形式空间中多个根基因座的方程式和共融。 PI计划随着二元形式的程度使用某些单型型结构增长。最近,这被成功地用于给出新的绿色猜想的新证明。第二个主题涉及确定性品种的共同体通过与超同质空间的连贯共同体和经典Grothendieck-Springer分辨率的超级类似物的连贯性进行计算。这是由于在这些共同体上谎言超级骨的意外行动的存在,实际上为它们的存在提供了概念上的解释。另一方面,它还提供了一种新的策略,可以找到PI计划探索的Borel-Weil-Bott Theorem的超级类似物。第三个主题涉及咖喱代数; PI最近与安德鲁·斯诺登(Andrew Snowden)合作提出的一个概念。这提供了表示稳定理论与谎言理论(例如伯恩斯坦 - 吉尔夫德 - 吉尔福德)类别O之间的深厚联系。PI计划将这些技术从谎言理论中导入这些技术,以在表示稳定性及其应用中找到并证明了新的结构性结果。该奖项反映了NSF的法定任务,并通过评估了基金会的范围,并通过评估了基金会的范围。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Steven Sam的其他基金

Interactions between Commutative Algebra and Representation Theory
交换代数与表示论之间的相互作用
  • 批准号:
    1848744
    1848744
  • 财政年份:
    2018
  • 资助金额:
    $ 34.45万
    $ 34.45万
  • 项目类别:
    Standard Grant
    Standard Grant
CAREER: Categorical and Classical Symmetries in Commutative Algebra and Algebraic Geometry
职业:交换代数和代数几何中的分类和经典对称性
  • 批准号:
    1849173
    1849173
  • 财政年份:
    2018
  • 资助金额:
    $ 34.45万
    $ 34.45万
  • 项目类别:
    Continuing Grant
    Continuing Grant
CAREER: Categorical and Classical Symmetries in Commutative Algebra and Algebraic Geometry
职业:交换代数和代数几何中的分类和经典对称性
  • 批准号:
    1651327
    1651327
  • 财政年份:
    2017
  • 资助金额:
    $ 34.45万
    $ 34.45万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Interactions between Commutative Algebra and Representation Theory
交换代数与表示论之间的相互作用
  • 批准号:
    1500069
    1500069
  • 财政年份:
    2015
  • 资助金额:
    $ 34.45万
    $ 34.45万
  • 项目类别:
    Standard Grant
    Standard Grant

相似国自然基金

基于多体散射观点的微纳机电系统中多体Casimir相互作用研究
  • 批准号:
    12304396
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
社交网络上观点动力学的重要影响因素与高效算法
  • 批准号:
    62372112
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
言语交际中的观点采择老化:基于认知控制的行为干预与神经调控
  • 批准号:
    32371112
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
具异构逻辑约束的社交网络观点动力学分析与控制研究
  • 批准号:
    62376242
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
示例引导的专业文本知识观点推断
  • 批准号:
    62376138
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

The syntax of nominal copular clauses: theoretical and empirical perspectives
名词系动词从句的语法:理论和实证视角
  • 批准号:
    AH/Y007492/1
    AH/Y007492/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.45万
    $ 34.45万
  • 项目类别:
    Research Grant
    Research Grant
Mental Health and Occupational Functioning in Nurses: An investigation of anxiety sensitivity and factors affecting future use of an mHealth intervention
护士的心理健康和职业功能:焦虑敏感性和影响未来使用移动健康干预措施的因素的调查
  • 批准号:
    10826673
    10826673
  • 财政年份:
    2024
  • 资助金额:
    $ 34.45万
    $ 34.45万
  • 项目类别:
Attitudes towards sustainable plant-based diets in Japan: Business and consumer perspectives
日本对可持续植物性饮食的态度:企业和消费者的观点
  • 批准号:
    24K16414
    24K16414
  • 财政年份:
    2024
  • 资助金额:
    $ 34.45万
    $ 34.45万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
    Grant-in-Aid for Early-Career Scientists
Global Perspectives of the Short-term Association between Suicide and Nighttime Excess Heat during Tropical Nights
热带夜晚自杀与夜间酷热之间短期关联的全球视角
  • 批准号:
    24K10701
    24K10701
  • 财政年份:
    2024
  • 资助金额:
    $ 34.45万
    $ 34.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
Reconceptualizing Well-being to Foster a Sustainable Society through Indigenous and Youth Perspectives from the Global South
从南半球原住民和青年的角度重新定义福祉,促进可持续发展的社会
  • 批准号:
    24K03155
    24K03155
  • 财政年份:
    2024
  • 资助金额:
    $ 34.45万
    $ 34.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
    Grant-in-Aid for Scientific Research (B)