CAREER: Boundary Control Towards Smart Water Management Systems
职业:智能水管理系统的边界控制
基本信息
- 批准号:2302030
- 负责人:
- 金额:$ 52.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This Faculty Early Career Development (CAREER) grant will provide viable solutions to control combined river-dam-reservoir systems in an era of unceasing growing demand for water and energy. Global warming is drastically altering rainfall patterns, increasing the risk of water scarcity. The rapid conversion of natural landscapes to urbanized areas that are continually growing in population further accentuates this issue. Sustainable management strategies are becoming critical to ensure the optimum use of essential but limited water resources on the planet. Often, river infrastructures such as dams, gates, and reservoirs are built to satisfy human societies' water and energy demands. However, the maintenance of costly engineered river infrastructures is still posing crucial problems related to reservoir sedimentation and ecosystem preservation. First, estimation methodologies that allow real-time quantification and monitoring of distributed profiles of sediments transported in a water channel from the measurement of appropriate quantities at gate locations will be developed. Second, flow control strategies for hydraulic systems governed by continuum models of density gradient induced by moving sediment will be exploited to ensure stable operation when gates release high discharges in the channel or reservoir, generating turbulence during sediment flushing or venting operations. An experimental setup that supports the feasibility and efficiency of the control/estimation methodologies will be designed. While advancing the science through the development of innovative real-time control and estimation approaches, the research program will be consolidated with an integrated educational plan with the introduction of a graduate course related to the research topic. This project will create opportunities for the participation of students in research and development in water management systems at the K-12, undergraduate, and graduate levels.The key idea of the research is to exploit PDE (Partial Differential Equation) boundary control techniques towards efficient water and sediment dynamics management. Fundamental balance equations reflecting the dynamics of coupled water and sediment waves, namely, the bilayer Saint-Venant model, which describes a multiphase flow with a density gradient, will be exploited to achieve the objective. The main difficulties to overcome involve the real-time monitoring of distributed sediment bed profiles and disturbances arising from flushing processes such as shock-waves and hydraulic jumps generated by significant gate discharges over channels. Strongly coupled nonlinear hyperbolic PDEs and mixed systems consisting of cascading hyperbolic PDEs and ODE (Ordinary Differential Equations) are relevant to the flow physics problems. The backstepping control technique combined with Lyapunov analysis will be employed to derive high-performance observers and controllers that solely use gate actuation dynamics and output measurements to enable fast and exponential stabilization at a prescribed setpoint. Various extensions of the theoretical outcomes of the research can essentially solve decisive challenges related to the control of traffic dynamics, networks of sewer systems, and pollutant transport in water flow, to name a few.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该教师早期职业发展(CAREER)补助金将为在水和能源需求不断增长的时代控制河流-大坝-水库组合系统提供可行的解决方案。全球变暖正在极大地改变降雨模式,增加水资源短缺的风险。自然景观迅速转变为人口不断增长的城市化地区,进一步加剧了这一问题。可持续管理战略对于确保地球上必要但有限的水资源的最佳利用变得至关重要。通常,修建水坝、闸门和水库等河流基础设施是为了满足人类社会对水和能源的需求。然而,昂贵的河流基础设施的维护仍然面临着与水库沉积和生态系统保护相关的关键问题。首先,将开发一种估算方法,通过在闸门位置测量适当的数量来实时量化和监测水道中输送的沉积物的分布剖面。其次,将利用由移动沉积物引起的密度梯度连续体模型控制的液压系统的流量控制策略,以确保当闸门在渠道或水库中释放高流量、在沉积物冲刷或排气操作期间产生湍流时稳定运行。将设计一个支持控制/估计方法的可行性和效率的实验装置。在通过开发创新的实时控制和估计方法来推进科学发展的同时,研究计划将与综合教育计划相结合,引入与研究主题相关的研究生课程。该项目将为 K-12、本科生和研究生级别的学生参与水管理系统的研究和开发创造机会。该研究的关键思想是利用 PDE(偏微分方程)边界控制技术实现高效水和沉积物动态管理。将利用反映耦合水波和沉积物波动力学的基本平衡方程,即描述具有密度梯度的多相流的双层圣维南模型来实现这一目标。需要克服的主要困难包括实时监测分布式沉积物床剖面和冲刷过程产生的扰动,例如河道上大量闸门流量产生的冲击波和水跃。强耦合非线性双曲偏微分方程以及由级联双曲偏微分方程和常微分方程(ODE)组成的混合系统与流动物理问题相关。反步控制技术与李亚普诺夫分析相结合,将用于衍生高性能观测器和控制器,它们仅使用门驱动动力学和输出测量来实现在指定设定点的快速和指数稳定。该研究的理论成果的各种扩展可以从本质上解决与交通动态控制、下水道系统网络和水流污染物输送等相关的决定性挑战。该奖项反映了 NSF 的法定使命,并被认为是值得的通过使用基金会的智力优势和更广泛的影响审查标准进行评估来获得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mamadou Diagne其他文献
Well-posedness and exactcontrollability for the mass balance equations of an extrusion process
挤压过程质量平衡方程的适定性和精确可控性
- DOI:
10.1002/mma.3719 - 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Mamadou Diagne;Peipei Shang;王志强 - 通讯作者:
王志强
Boundary control of nonlinear ODE/Wave PDE systems with spatially-varying propagation speed
传播速度随空间变化的非线性 ODE/Wave PDE 系统的边界控制
- DOI:
10.1109/tac.2020.3046576 - 发表时间:
2021 - 期刊:
- 影响因子:6.8
- 作者:
Cai Xiushan;Mamadou Diagne - 通讯作者:
Mamadou Diagne
Mamadou Diagne的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mamadou Diagne', 18)}}的其他基金
A PDE Framework for Sensing and Control of Metal Additive Manufacturing
用于金属增材制造传感和控制的偏微分方程框架
- 批准号:
2222250 - 财政年份:2023
- 资助金额:
$ 52.86万 - 项目类别:
Standard Grant
CAREER: Boundary Control Towards Smart Water Management Systems
职业:智能水管理系统的边界控制
- 批准号:
1944051 - 财政年份:2020
- 资助金额:
$ 52.86万 - 项目类别:
Standard Grant
相似国自然基金
模型-数据混合驱动的拥堵路网动态边界控制
- 批准号:52302411
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
具有边界控制的无穷维端口哈密顿系统的指数稳定性数值逼近及其应用
- 批准号:12371446
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
时空切换动态网络基于全域与边界控制的限时无源与同步分析
- 批准号:62373317
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于边界控制的网络化抛物型偏微分系统一致性研究
- 批准号:62303163
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
具有移动边界和干扰的无穷维系统的控制
- 批准号:62303289
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Elucidation of the influence of twin boundary on Jc of REBCO coated conductors using twin boundary control method
使用孪晶界控制方法阐明孪晶界对 REBCO 涂层导体 Jc 的影响
- 批准号:
23K03929 - 财政年份:2023
- 资助金额:
$ 52.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Control for boundary segments of martensite structure for retarding hydrogen embrittlement
控制马氏体结构边界段以延缓氢脆
- 批准号:
23H01717 - 财政年份:2023
- 资助金额:
$ 52.86万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A conserved control module for cleft-like tissue boundary formation in the vertebrate embryo
脊椎动物胚胎中裂隙样组织边界形成的保守控制模块
- 批准号:
RGPIN-2017-06667 - 财政年份:2022
- 资助金额:
$ 52.86万 - 项目类别:
Discovery Grants Program - Individual
Synchronization control of hyperbolic equations with van der Pol boundary condition and its application to secure communication systems
范德波尔边界条件双曲方程同步控制及其在安全通信系统中的应用
- 批准号:
21K03370 - 财政年份:2021
- 资助金额:
$ 52.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Wide-ranged turbulent flow control using singular pulsations appearing in the gas-liquid multiphase turbulent boundary layer
利用气液多相湍流边界层中出现的奇异脉动进行宽范围湍流控制
- 批准号:
21K14069 - 财政年份:2021
- 资助金额:
$ 52.86万 - 项目类别:
Grant-in-Aid for Early-Career Scientists