Rational Synthesis of Alloy Nanocrystals with Controlled Compositions and Facets for Electrocatalysis
电催化用可控成分和晶面的合金纳米晶的合理合成
基本信息
- 批准号:2219546
- 负责人:
- 金额:$ 61.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-11-01 至 2025-10-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Catalysts consisting of nanoscale metal particles deposited on high-surface-area supports have long been used to promote the rates, product selectivity, and energy efficiency of chemical reactions. However, a long-standing challenge in such heterogeneous catalysis has been the design and synthesis of catalysts that are optimally tuned with respect to particle composition and structure. The project addresses that challenge by developing a precise and robust method for the fabrication of alloy-based electrocatalysts with well-controlled surfaces. The novel synthesis approach will be demonstrated as applied to the direct electrocatalytic conversion of hydrogen (H2) and oxygen (O2) to hydrogen peroxide (H2O2) – thus offering an alternative to energy-intensive and complex current technology. Project results will be further adapted to enhance classroom teaching, including the development of demonstrations (e.g., animations and experiments) related to key concepts in science and engineering. The multi-disciplinary and collaborative nature of the project will offer a vehicle to enrich the education and training experiences of participating students while broadening participation of underrepresented groups in research. Although nanocrystals made of alloys have been extensively explored for a wide variety of electrocatalytic processes, most of the studies reported in the literature are based on a trial-and-error approach that involves labor-intensive screening of numerous alloys in terms of elemental composition and atomic ratio. It is also a grand challenge to quantitatively control the surface of an alloy-based nanocrystal in terms of composition, elemental distribution, and atomic arrangement. With a focus on the electrocatalytic production of hydrogen peroxide, a compound pivotal to a variety of industrial applications, first-principles calculations and data science will be used to identify candidate alloys in terms of composition and surface structure, followed by their faithful translation into nanocrystal-based catalysts through the development of a synthetic method. Different from conventional approaches, solutions of different precursors will be co-titrated dropwise into the reaction solution so that the instantaneous concentration of each precursor is maintained in a predefined steady state throughout the synthesis. As a result, atoms will be produced from the different precursors at stable, pre-specified rates for the generation of alloy nanocrystals with a uniform composition, with the atomic ratio being determined by the reduction rates of their precursors in the steady state. When conformally deposited on nanocrystals with different shapes - as overlayers of a few atomic layers in thickness - alloy-based electrocatalysts with well-defined surfaces and enhanced resistance against elemental segregation will be obtained. The catalytic data from experimental measurements and theoretical predictions will be compared to refine the computational methods while establishing a feedback loop for iterative optimization of the catalysts without involving trial and error. The immediate outcome of this transformative research will be the creation of a knowledge base for the rational development of electrocatalysts featuring an optimal combination of activity, selectivity, and durability toward the electrocatalytic production of hydrogen peroxide. The methods and techniques to be developed can also be extended to accelerate the discovery and development of many other types of nanomaterials with enhanced performance in various applications, including those related to chemical production, petroleum refining, national security, and public health.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
由沉积在高表面积载体上的纳米级金属颗粒组成的催化剂长期以来一直用于提高化学反应的速率、产物选择性和能量效率,然而,这种多相催化的长期挑战是设计和合成。该项目通过开发一种精确而稳健的方法来制造具有良好控制表面的合金基电催化剂来解决这一挑战。应用于将氢气 (H2) 和氧气 (O2) 直接电催化转化为过氧化氢 (H2O2),从而为能源密集型且复杂的现有技术提供替代方案 项目成果将进一步适应于加强课堂教学,包括开发。该项目的多学科和协作性质将提供与科学和工程关键概念相关的演示(例如动画和实验),从而丰富参与学生的教育和培训经验,同时扩大代表性不足的群体的参与。尽管由合金制成的纳米晶体已被广泛探索用于各种电催化过程,但文献中报道的大多数研究都是基于试错方法,涉及对多种合金进行元素密集型筛选。定量控制合金基纳米晶体的表面组成、元素分布和原子排列也是一个巨大的挑战,重点是电催化生产氢。过氧化物是一种对各种工业应用至关重要的化合物,第一原理计算和数据科学将用于识别候选合金的成分和表面结构,然后通过开发合成材料将其忠实地转化为基于纳米晶体的催化剂与传统方法不同,不同前体的溶液将被滴定到反应溶液中,以便在整个合成过程中每种前体的瞬时浓度保持在预定的稳态。不同的前体以稳定的、预先指定的速率生成具有均匀成分的合金纳米晶体,原子比由其前体在稳定状态下的还原率决定,当共形沉积在不同形状的纳米晶体上时,作为覆盖层。将获得具有明确表面和增强的抗元素偏析能力的几个原子层厚度的合金基电催化剂,并将对实验测量和理论预测的催化数据进行比较以进行改进。这项变革性研究的直接成果将是为合理开发具有活性、选择性和催化活性的最佳组合的电催化剂创建一个知识库。所开发的方法和技术还可以扩展,以加速许多其他类型的纳米材料的发现和开发,这些材料在各种应用中具有增强的性能,包括与化学生产、石油相关的应用。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Deterministic Synthesis of Pd Nanocrystals Enclosed by High-Index Facets and Their Enhanced Activity toward Formic Acid Oxidation
高折射率晶面封闭的 Pd 纳米晶体的确定性合成及其增强的甲酸氧化活性
- DOI:10.1021/prechem.3c00060
- 发表时间:2023-08-28
- 期刊:
- 影响因子:0
- 作者:Liu, Maochang;Zhou, Siyu;Choi, Sang-Il;Xia, Younan
- 通讯作者:Xia, Younan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Younan Xia其他文献
Soft lithographic methods for nano-fabrication
用于纳米制造的软光刻方法
- DOI:
10.1039/a700145b - 发表时间:
1997-09-14 - 期刊:
- 影响因子:0
- 作者:
Xiao;Younan Xia;G. Whitesides - 通讯作者:
G. Whitesides
Pt − Co@Pt Octahedral Nanocrystals: Enhancing Their Activity and Durability toward Oxygen Reduction with an Intermetallic Core and an Ultrathin Shell
Pt – Co@Pt 八面体纳米晶体:通过金属间化合物核和超薄壳增强其氧还原活性和耐久性
- DOI:
- 发表时间:
1970-01-01 - 期刊:
- 影响因子:0
- 作者:
Minghao Xie;Zhiheng Lyu;Ruhui Chen;Min Shen;Zhenming Cao;Younan Xia - 通讯作者:
Younan Xia
Single crystalline nanowires of lead: Large-scale synthesis, mechanistic studies, and transport measurements
铅单晶纳米线:大规模合成、机理研究和输运测量
- DOI:
10.1021/jp036758x - 发表时间:
2004-01-20 - 期刊:
- 影响因子:3.3
- 作者:
Yuliang Wang;Xuchuan Jiang;T. Herricks;Younan Xia - 通讯作者:
Younan Xia
Elucidating the Role of Reduction Kinetics in the Phase-Controlled Growth on Preformed Nanocrystal Seeds: A Case Study of Ru
阐明还原动力学在预制纳米晶体种子相控生长中的作用:以 Ru 为例
- DOI:
10.1021/jacs.4c01725 - 发表时间:
2024-03-30 - 期刊:
- 影响因子:15
- 作者:
Quynh N. Nguyen;Eun Mi Kim;Yong Ding;A. Janssen;Chenxiao Wang;Kei Kwan Li;Junseok Kim;K. Fichthorn;Younan Xia - 通讯作者:
Younan Xia
A systematic study of the catalytic durability of Pd@Pt2−3L nano-sized octahedra toward oxygen reduction
Pd@Pt2-3L纳米八面体氧还原催化耐久性的系统研究
- DOI:
10.1016/j.cattod.2016.06.045 - 发表时间:
2017-02-01 - 期刊:
- 影响因子:5.3
- 作者:
Jinho Park;M. Vara;Younan Xia - 通讯作者:
Younan Xia
Younan Xia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Younan Xia', 18)}}的其他基金
High-Entropy Alloy Nanocrystals with Controlled Compositions and Surface Structures
成分和表面结构可控的高熵合金纳米晶
- 批准号:
2333595 - 财政年份:2024
- 资助金额:
$ 61.45万 - 项目类别:
Continuing Grant
Noble-Metal Nanocrystals in Metastable Phases
亚稳态贵金属纳米晶体
- 批准号:
2105602 - 财政年份:2022
- 资助金额:
$ 61.45万 - 项目类别:
Continuing Grant
Fabrication and Scalable Production of Nanobottles
纳米瓶的制造和规模化生产
- 批准号:
2137669 - 财政年份:2021
- 资助金额:
$ 61.45万 - 项目类别:
Standard Grant
Metal-Sensitive Functionalization and Self-Assembly of Bimetallic Nanocrystals
双金属纳米晶的金属敏感功能化和自组装
- 批准号:
2002653 - 财政年份:2021
- 资助金额:
$ 61.45万 - 项目类别:
Standard Grant
Bimetallic Janus Nanocrystals and Their Derivatives
双金属Janus纳米晶及其衍生物
- 批准号:
1804970 - 财政年份:2018
- 资助金额:
$ 61.45万 - 项目类别:
Standard Grant
Continuous and Scalable Manufacturing of Platinum-Nickel Nanocatalysts for Polymer Electrolyte Membrane Fuel Cells
用于聚合物电解质膜燃料电池的铂镍纳米催化剂的连续和规模化制造
- 批准号:
1634687 - 财政年份:2016
- 资助金额:
$ 61.45万 - 项目类别:
Standard Grant
Atomic Layer-by-Layer Deposition of Pt on Pd Nanocrystals with Well-Controlled Facets
晶面可控的 Pd 纳米晶体上 Pt 原子层沉积
- 批准号:
1505441 - 财政年份:2015
- 资助金额:
$ 61.45万 - 项目类别:
Standard Grant
Towards a Quantitative Knob for Controlling the Shape of Noble-Metal Nanocrystals
用于控制贵金属纳米晶体形状的定量旋钮
- 批准号:
1505400 - 财政年份:2015
- 资助金额:
$ 61.45万 - 项目类别:
Continuing Grant
Seeded Growth of Noble-Metal Nanocrystals
贵金属纳米晶体的种子生长
- 批准号:
1215034 - 财政年份:2012
- 资助金额:
$ 61.45万 - 项目类别:
Continuing Grant
Seeded Growth of Noble-Metal Nanocrystals
贵金属纳米晶体的种子生长
- 批准号:
1104614 - 财政年份:2011
- 资助金额:
$ 61.45万 - 项目类别:
Continuing Grant
相似国自然基金
高性能复杂铝合金构件半固态触变-固态塑变复合成形机制
- 批准号:
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:
非常规晶相合金纳米线的合成调控及电催化应用研究
- 批准号:22371122
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
金属合金/钙钛矿氧化物的原位构筑及电催化CO2和NO3-共还原合成尿素研究
- 批准号:22372057
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于有机-无机串联反应的高熵合金纳米材料的湿化学精准合成及其催化性质研究
- 批准号:22371222
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
铂基多主元高熵合金纳米管催化剂的可控合成、生长机理及电催化性能
- 批准号:22379112
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
ERI: Better by Design: Rational Design and Synthesis of Alloy (Electro)Catalysts Atom-by-Atom
ERI:更好的设计:逐原子合金(电)催化剂的合理设计与合成
- 批准号:
2301427 - 财政年份:2023
- 资助金额:
$ 61.45万 - 项目类别:
Standard Grant
Rational design of artificial metalloenzymes using protein metal complexes
利用蛋白质金属配合物合理设计人工金属酶
- 批准号:
21H01954 - 财政年份:2021
- 资助金额:
$ 61.45万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Construction of new catalyst preparation method using solution plasma and rational design of artificial photosynthetic catalyst
溶液等离子体新型催化剂制备方法的构建及人工光合催化剂的合理设计
- 批准号:
21K18856 - 财政年份:2021
- 资助金额:
$ 61.45万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
分子動力学に基づく非平衡・動的界面物性導出と合金組織形成過程の原子論的理解
基于分子动力学和合金结构形成过程的原子理解推导非平衡/动态界面特性
- 批准号:
20J23028 - 财政年份:2020
- 资助金额:
$ 61.45万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of composite nanoparticle precision synthesis technology for rational nanocatalyst design
开发复合纳米颗粒精密合成技术以实现合理的纳米催化剂设计
- 批准号:
20K05277 - 财政年份:2020
- 资助金额:
$ 61.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)