ERI: Enabling tunable electronic device fabrication on flexible substrates using Barium Strontium Titanate (BST) printable ink development
ERI:使用钛酸锶钡 (BST) 可印刷油墨开发,在柔性基板上实现可调电子设备制造
基本信息
- 批准号:2301693
- 负责人:
- 金额:$ 19.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Printed or additive manufacturing has application potential as a low-cost, high-resolution, fast prototyping of a range of complex circuits. Printed tunable devices proposed in this work will allow the electrical tuning of circuit functions, drastically reducing the cost, footprint, and weight of the overall circuitry compared to mechanically tunable electrical devices. These printed tunable electrical devices are critical to national security, especially radio communications. In addition, low-cost Internet of Things (IoT) and wearable devices will significantly benefit from the proposed tunable flexible electrical devices. However, currently, there are no tunable printable inks to fabricate tunable electrical devices on flexible substrates. In addition, existing printable materials need high-temperature processing (greater than 800 °C) to achieve the required tunability, which will damage most types of flexible substrates, such as plastics, paper, and fabrics. Multiple challenges and unique bottlenecks are associated with printable inks, and there are limited ongoing research efforts to solve these issues. This project will cover novel tunable materials syntheses, printable ink development, and the design, simulation, and fabrication of tunable electrical devices. This project will open a new paradigm of tunable flexible electronic devices. Both undergraduate and graduate students will directly benefit from this project, and the proposed educational outreach projects will enhance middle school students' interest and awareness of science and engineering careers. In addition, the proposed project's novel findings will be integrated into graduate-level printed electronics-related teaching.This project will comprehensively advance the fundamental understanding of the utilization of sinterless Barium Strontium Titanate (BST) nanoparticles as a tunable material for flexible electronics. The composition of BST nanoparticles to achieve the highest possible dielectric constant and tunability at room temperature (without sintering) will be identified. An in depth investigation will be carried out to determine the effects of the Ba:Sr molar fraction, the size, and the packing density of BST nanoparticles on dielectric tunability. High-resolution X-Ray diffraction patterns of sinterless BST nanoparticles under an applied electric field will be used to investigate the correlation between the variation of lattice parameters and the dielectric tunability. This will give a greater insight into the dielectric tunability of sinterless BST nanoparticles, which have not been experimentally reported yet. Lowering the required bias voltage to less than 25 Volts is a significant achievement that enables the usage of printed tunable flexible devices in real-world applications, such as phase shifters, frequency-selective surfaces, and phased array antennas. These devices are not currently feasible for real-world applications. The proposed work will significantly advance the knowledge of sinterless BST nanoparticles as a tunable material, nanoparticle ink formulation for direct-write printing technologies, and fully printed tunable radio and microwave frequency devices on flexible substrates.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
印刷或增材制造具有作为一系列复杂电路的低成本、高分辨率、快速原型制作的应用潜力,将允许对电路功能进行电气调谐,从而大大降低成本、占地面积和性能。与机械可调电气设备相比,这些印刷可调电气设备对国家安全至关重要,尤其是无线电通信。此外,低成本物联网(IoT)和可穿戴设备将大大受益于所提出的可调电气设备。然而,目前还没有可调谐的可印刷油墨来在柔性基板上制造可调谐的电子器件,此外,现有的可印刷材料需要高温处理(高于800°C)才能达到所需的可调谐性,这会损坏。大多数类型的柔性基材,如塑料、纸张和织物,都与可印刷油墨相关,目前解决这些问题的研究工作有限。可调材料合成、可打印墨水开发以及可调电子设备的设计、模拟和制造,该项目将开启可调柔性电子设备的新范例,本科生和研究生都将直接从该项目和拟议的教育中受益。外展项目将提高中学生对科学和工程职业的兴趣和意识。此外,拟议项目的新颖发现将融入到研究生水平的印刷电子相关教学中。该项目将全面推进对利用的基本理解。将确定无烧结钛酸锶钡 (BST) 纳米颗粒作为柔性电子器件的可调谐材料,以在室温下(无需烧结)实现尽可能高的介电常数和可调谐性。确定 Ba:Sr 摩尔分数、BST 纳米粒子的尺寸和堆积密度对高分辨率 X 射线介电可调性的影响。无烧结 BST 纳米粒子在外加电场下的衍射图将用于研究晶格参数变化与介电可调性之间的相关性,这将有助于更深入地了解无烧结 BST 纳米粒子的介电可调性,而这一点尚未有实验报道。然而,将所需的偏置电压降低至 25 伏以下是一项重大成就,可以在实际应用(例如相位)中使用印刷可调柔性器件。这些设备目前在实际应用中尚不可行,该工作将显着推进无烧结 BST 纳米粒子作为可调谐材料、纳米粒子墨水配方的直写印刷技术的知识。 ,以及在柔性基板上完全印刷的可调谐射频和微波频率设备。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Oshadha Ranasingha其他文献
Oshadha Ranasingha的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Enabling a circular economy for poultry via exploration of metabolism
通过探索新陈代谢实现家禽循环经济
- 批准号:
DE240100802 - 财政年份:2024
- 资助金额:
$ 19.75万 - 项目类别:
Discovery Early Career Researcher Award
International Centre-to-Centre Collaboration: New catalysts for acetylene processes enabling a sustainable future
国际中心间合作:乙炔工艺的新型催化剂实现可持续的未来
- 批准号:
EP/Z531285/1 - 财政年份:2024
- 资助金额:
$ 19.75万 - 项目类别:
Research Grant
Enabling Sustainable Wind Energy Expansion in Seasonally Stratified Seas (eSWEETS3)
实现季节性分层海洋的可持续风能扩张 (eSWEETS3)
- 批准号:
NE/X005003/1 - 财政年份:2024
- 资助金额:
$ 19.75万 - 项目类别:
Research Grant
Enabling Reliable Testing Of SMLM Datasets
实现 SMLM 数据集的可靠测试
- 批准号:
BB/X01858X/1 - 财政年份:2024
- 资助金额:
$ 19.75万 - 项目类别:
Research Grant
Enabling precision engineering of complex chemical products for high value technology sectors.
为高价值技术领域实现复杂化学产品的精密工程。
- 批准号:
EP/X040992/1 - 财政年份:2024
- 资助金额:
$ 19.75万 - 项目类别:
Research Grant