Supply Chain Decision Making Framework Considering Uncertainty

考虑不确定性的供应链决策框架

基本信息

  • 批准号:
    2217472
  • 负责人:
  • 金额:
    $ 41.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

COVID-19 has exacerbated an already fragile supply chain network for many of today’s everyday goods, food supplies, specialty chemicals, fuels, electronics components, and pharmaceuticals. The pandemic tested the flexibility and resilience of global supply chains as major international corporations experienced personnel shortages and other unexpected disruptions to their operations. These challenges motivate a vision for a restructured supply chain of the future, characterized by flexibility and fast adaptability to abrupt changes. To accomplish this, the decision-making time horizon, enterprise complexity, and objectives of the enterprise must be considered when developing a strategy for controlling individual manufacturing units, scheduling tasks in a manufacturing plan to meet product demand, and planning at the enterprise management level to ensure that raw materials are available throughout the supply chain. This research program will develop methodologies and frameworks that target the modernization of the enterprise structure to account for uncertainty and more closely integrate different levels of the supply chain for purified gas and pharmaceutical manufacturing and plastics recycling operations. This will allow for more efficient use of resources, avoid unnecessary waste, and compensate for expected and unexpected events to avoid the breakdown of the supply chain. The research will take place at the University of Delaware and will provide the funds to educate graduate and undergraduate students in this interdisciplinary domain. The PI has a long history of promoting women and underrepresenting minorities in their work. Results from this research will be translated into software tools useful to industry for making better supply chain decisions. Previous attempts to integrate process models, scheduling methods, planning problems and supply chain optimization focused on small scale benchmark problems and were based either on using intuition to incorporate full-scale representations of the lower-level problems into higher levels or used mathematical simplifications of the lower levels to facilitate integration. In this research program, a new approach to integrating decision-making processes is proposed that leverages the large amount of information that typically is available in enterprises and generates decision-making strategies that account for uncertainty in a computationally tractable manner. The PI has extensive expertise in the integration of planning, scheduling, and control problems, as well as in the areas of feasibility analysis and uncertainty quantification. It is proposed that integration and optimization can be achieved by first defining mathematical models for the optimization of each decision-making stage, and then identifying constraints that are dependent on lower-level problems. Among other factors, the feasibility of the lower-level problems is identified as essential information that must be incorporated in the higher-level decision. These constraints are usually complex in form and cannot be accounted for without increasing the dimensionality of the optimization problem and generating intractable formulations. Therefore, it will be demonstrated that data-driven models can be used to obtain simpler forms for the interdependent constraints. These models will be created with the data available from the enterprise, leveraging the potential of big-data analytics and the internet of things. The effects of uncertainty are key to the performance of optimal decisions in the supply chain. In this research program, strategies to minimize the threats posed by operational and disruption uncertainties will be developed. Computational complexity of the final optimization problem will be controlled through the use of decomposition approaches and a rolling horizon strategy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
COVID-19 加剧了当今许多日常用品、食品供应、特种化学品、燃料、电子元件和药品本已脆弱的供应链网络,由于大型国际公司经历了人员短缺,这场大流行考验了全球供应链的灵活性和弹性。这些挑战激发了对未来供应链进行重组的愿景,其特点是灵活性和快速适应突然变化的能力,需要决策时间范围、企业复杂性和目标。企业必须考虑的时候制定控制各个制造单位的策略,在制造计划中安排任务以满足产品需求,并在企业管理层进行规划以确保整个供应链中的原材料可用。该研究计划将开发针对以下目标的方法和框架。企业结构的现代化,以解决不确定性,并更紧密地整合纯化气体和药品制造以及塑料回收业务的不同级别的供应链,这将有助于更有效地利用资源,避免不必要的浪费,并补偿预期和意外的损失。该研究将采取措施避免供应链崩溃。该项目在特拉华大学拥有一席之地,并将提供资金来教育这一跨学科领域的研究生和本科生。这项研究的结果将转化为有用的软件工具。行业做出更好的供应链决策的先前尝试将流程模型、调度方法、规划问题和供应链优化集中在小规模基准问题上,并且基于使用直觉将较低级别问题的全面表示纳入其中。更高层次或使用数学简化在该研究项目中,提出了一种集成决策过程的新方法,该方法利用企业中通常可用的大量信息,并生成以计算可处理的方式解释不确定性的决策策略。 PI 在规划、调度和控制问题的集成以及可行性分析和不确定性量化领域拥有广泛的专业知识,建议首先定义每个问题的优化数学模型来实现集成和优化。决策阶段,然后确定约束条件除其他因素外,较低级别问题的可行性被认为是必须纳入较高级别决策的基本信息。这些约束的形式通常很复杂,如果不考虑就无法解释。增加优化问题的维度并生成棘手的公式,将证明数据驱动模型可以用于相互依赖的约束的更简单的形式,这些模型将利用企业提供的数据来创建。大数据分析和互联网不确定性的影响是供应链中最优决策的关键,在该研究项目中,将通过控制最终优化问题的计算复杂性来制定最小化操作和中断不确定性所造成的威胁的策略。使用分解方法和滚动策略。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A mathematical modeling approach for supply chain management under disruption and operational uncertainty
中断和运营不确定性下供应链管理的数学建模方法
  • DOI:
    10.1002/aic.18037
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Badejo, Oluwadare;Ierapetritou, Marianthi
  • 通讯作者:
    Ierapetritou, Marianthi
Mathematical Programming Approach to Optimize Tactical and Operational Supply Chain Decisions under Disruptions
用于优化中断情况下的战术和运营供应链决策的数学规划方法
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marianthi Ierapetritou其他文献

Accelerating manufacturing for biomass conversionviaintegrated process and bench digitalization: a perspective
  • DOI:
    10.1039/d1re00560j
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Sai Praneet Batchu;Borja Hernandez;Abhinav Malhotra;Hui Fang;Marianthi Ierapetritou;Dionisios G. Vlachos
  • 通讯作者:
    Dionisios G. Vlachos
Cost and energy efficient cyclic separation of 5-hydroxymethyl furfural from an aqueous solution
  • DOI:
    10.1039/d1gc00841b
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Yung Wei Hsiao;Aikaterini Anastasopoulou;Marianthi Ierapetritou;Dionisios G. Vlachos
  • 通讯作者:
    Dionisios G. Vlachos
Ethylene production: process design, techno-economic and life-cycle assessments
  • DOI:
    10.1039/d3gc03858k
  • 发表时间:
    2024-01
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Yuqiu Chen;Mi Jen Kuo;Raul Lobo;Marianthi Ierapetritou
  • 通讯作者:
    Marianthi Ierapetritou
One-step lignocellulose depolymerization and saccharification to high sugar yield and less condensed isolated lignin
  • DOI:
    10.1039/d0gc04119j
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Sunitha Sadula;Natalia Rodriguez Quiroz;Abhay Athaley;Elvis Osamudiamhen Ebikade;Marianthi Ierapetritou;Dionisios G. Vlachos;Basudeb Saha
  • 通讯作者:
    Basudeb Saha
Process intensified lauric acid self-ketonization and its economic and environmental impact on biolubricant base oil production
  • DOI:
    10.1039/d4gc01721h
  • 发表时间:
    2024-07
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Tejas Goculdas;Zhifei Yuliu;Sunitha Sadula;Weiqing Zheng;Basudeb Saha;Arvind Nanduri;Marianthi Ierapetritou;Dionisios G. Vlachos
  • 通讯作者:
    Dionisios G. Vlachos

Marianthi Ierapetritou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marianthi Ierapetritou', 18)}}的其他基金

FMRG: Eco: A Systems-Enabled Paradigm Shift for Modular Sustainable Chemical Manufacturing
FMRG:Eco:系统支持的模块化可持续化学制造范式转变
  • 批准号:
    2134471
  • 财政年份:
    2022
  • 资助金额:
    $ 41.75万
  • 项目类别:
    Standard Grant
SusChem Collaborative Research: Process Optimization of Novel Routes for the Production of bio-based Para-Xylene
SusChem 合作研究:生物基对二甲苯生产新路线的工艺优化
  • 批准号:
    2005905
  • 财政年份:
    2019
  • 资助金额:
    $ 41.75万
  • 项目类别:
    Continuing Grant
EAGER: Cybermanufacturing: Advanced Modeling and Information Management in Pharmaceutical Manufacturing
EAGER:网络制造:药品制造中的高级建模和信息管理
  • 批准号:
    1547171
  • 财政年份:
    2015
  • 资助金额:
    $ 41.75万
  • 项目类别:
    Standard Grant
SusChem Collaborative Research: Process Optimization of Novel Routes for the Production of bio-based Para-Xylene
SusChem 合作研究:生物基对二甲苯生产新路线的工艺优化
  • 批准号:
    1434548
  • 财政年份:
    2014
  • 资助金额:
    $ 41.75万
  • 项目类别:
    Continuing Grant
Workshop on Process Intensification September 30-October 1, 2014, Arlington, VA
过程强化研讨会 2014 年 9 月 30 日至 10 月 1 日,弗吉尼亚州阿灵顿
  • 批准号:
    1450788
  • 财政年份:
    2014
  • 资助金额:
    $ 41.75万
  • 项目类别:
    Standard Grant
Integration of scheduling and control using closed loop implementation
使用闭环实现集成调度和控制
  • 批准号:
    1159244
  • 财政年份:
    2012
  • 资助金额:
    $ 41.75万
  • 项目类别:
    Continuing Grant
Innovative methodologies for integrated planning and scheduling and industrial applications
集成规划和调度以及工业应用的创新方法
  • 批准号:
    0966861
  • 财政年份:
    2010
  • 资助金额:
    $ 41.75万
  • 项目类别:
    Standard Grant
Commercializing of Continuous Pharmaceutical Manufacturing Technology
连续药物制造技术的商业化
  • 批准号:
    0951845
  • 财政年份:
    2009
  • 资助金额:
    $ 41.75万
  • 项目类别:
    Standard Grant
Systematic Mathematical Strategies for Stochastic Modeling and Uncertainty in Production Planning and Scheduling
生产计划和调度中随机建模和不确定性的系统数学策略
  • 批准号:
    0625515
  • 财政年份:
    2006
  • 资助金额:
    $ 41.75万
  • 项目类别:
    Standard Grant
Travel Grant: FOCAPO 2008: Multi-Scale Integration of R&D, Manufacturing, and Optimization for Enterprise-Wide Operations
旅行补助金:FOCAPO 2008:R 的多尺度整合
  • 批准号:
    0638947
  • 财政年份:
    2006
  • 资助金额:
    $ 41.75万
  • 项目类别:
    Standard Grant

相似国自然基金

长链非编码RNA lincRX1对心脏祖细胞命运决定的调控功能与机理研究
  • 批准号:
    31970600
  • 批准年份:
    2019
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
长链非编码RNA MIPs在小孢子分化发育过程中的功能研究
  • 批准号:
    31870299
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
全球价值链视角下中国地区及行业真实增加值与真实生产率核算及其决定因素与政策分析框架研究
  • 批准号:
    71873075
  • 批准年份:
    2018
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目
基于肿瘤结合特异性CDR3δ序列的CARγδ-T细胞治疗实体肿瘤的研究
  • 批准号:
    81673010
  • 批准年份:
    2016
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
阿维菌素生物合成中决定B1:B2比例的分子机制的研究
  • 批准号:
    30700019
  • 批准年份:
    2007
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Integrating sustainability in supply chain planning and decision-making processes
将可持续性纳入供应链规划和决策过程
  • 批准号:
    RGPIN-2018-04555
  • 财政年份:
    2022
  • 资助金额:
    $ 41.75万
  • 项目类别:
    Discovery Grants Program - Individual
Game theoretical analysis and decision models in sustainable supply chain management
可持续供应链管理中的博弈论分析与决策模型
  • 批准号:
    RGPIN-2018-05529
  • 财政年份:
    2022
  • 资助金额:
    $ 41.75万
  • 项目类别:
    Discovery Grants Program - Individual
NSF Convergence Accelerator Track J: Rapid detection technologies and decision-support systems to mitigate food supply chain threats
NSF 融合加速器轨道 J:缓解食品供应链威胁的快速检测技术和决策支持系统
  • 批准号:
    2236622
  • 财政年份:
    2022
  • 资助金额:
    $ 41.75万
  • 项目类别:
    Standard Grant
Data-driven decision models for Industry 4.0 supply chain management
工业 4.0 供应链管理的数据驱动决策模型
  • 批准号:
    RGPIN-2022-04672
  • 财政年份:
    2022
  • 资助金额:
    $ 41.75万
  • 项目类别:
    Discovery Grants Program - Individual
Adaptive AI Decision Agents for Holistic Supply Chain Optimisation: Merging Societal and Business Objectives
用于整体供应链优化的自适应人工智能决策代理:融合社会和商业目标
  • 批准号:
    2815020
  • 财政年份:
    2022
  • 资助金额:
    $ 41.75万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了