Excellence in Research: Microwave-Assisted In-Situ Hydrogen Generation: Experimentation, Simulation, and Optimization

卓越的研究:微波辅助原位制氢:实验、模拟和优化

基本信息

  • 批准号:
    2247676
  • 负责人:
  • 金额:
    $ 46万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-15 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

This collaborative experimental and simulation-based research project aims to develop a new electromagnetic (EM)/microwave-assisted catalytic reaction process for in-situ hydrogen (H2) generation that takes place entirely within petroleum reservoir formations. This research is motivated by the urgent need to decarbonize our nation’s energy resources and to advance technologies that can lead to a practical hydrogen economy. Existing H2 generation processes suffer from either the high cost of water electrolysis or the high CO2 emissions generated by steam methane (natural gas) reforming. In this project, a radically different alternative is proposed to generate H2 within abandoned sandstone oil reservoirs so that only H2 is extracted at the surface, while all carbon-containing compounds (including CO2) are permanently locked within the reservoirs. The key innovation of this approach is that EM/microwave power will be radiated into the underground reaction region to heat and sustain the thermochemical reactions producing H2. Natural catalysts in sandstone rock minerals will play a synergistic role by increasing the efficiency of the H2 production reactions; alternative catalysts also will be investigated as a means of further increasing H2 production. Experimentally validated computer simulations of the reactions and gas-flow processes within the underground formations will play a crucial role in understanding this H2 production process and for the ultimate oil reservoir-scale implementations. Within this research program, two graduate students will be co-advised and mentored by the PIs. Research outcomes will be disseminated to the public though publications and presentations.This experimental/simulation-based research collaboration will explore an in-situ, EM/microwave-assisted H2 production process contained within a petroleum reservoir as an alternative to the steam methane reforming/water-gas shift process used to produce most of the domestic H2 generated today. The research will study fundamental rock-hydrocarbon-water-catalyst interactions controlled by the coupled microwave irradiation, heat transfer, fluid flows, and reactions that are responsible for the conversion of hydrocarbons and water to H2 under microwave/RF heating. Laboratory experiments under controlled microwave heating and using catalysts found naturally in reservoir rock formations will be conducted to generate reaction kinetics models describing H2 production rates. The reaction kinetics expressions will be combined with multiphase descriptions of gas and fluid transport though the porous reservoir rock formations, as well as electromagnetic (EM) radiation propagation and heating phenomena, to create a complete and validated multiscale and multiphysics simulator. This simulator will be used for a range of studies, from investigating the distribution and time-evolution of hotspots under EM heating to reservoir-scale optimization studies. Because of the exceedingly high computational cost of the latter, novel graph neural network (GNN)-based domain decomposition methods will be developed to facilitate parallelization of the large-scale dynamic simulations, resulting in a seamless integration of rigorous physics-driven methods and data-driven methods. Overall, the research efforts will (1) elucidate rock-hydrocarbon-water-catalyst interactions under EM/microwave heating and develop new kinetic models for oil conversion to H2 generation; (2) develop neural network assisted high performance simulation methods for nonlinear and multiphysics descriptions of EM-thermal interaction; (3) identify the rate-limiting processes for H2 generation; and (4) identify pathways to scale-up of experimental results.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项基于实验和仿真的研究项目旨在开发新的电磁(EM)/微波辅助催化反应过程,用于完全发生在石油储备中的原位氢(H2)生成。这项研究是出于迫切需要将我们国家的能源脱碳并推进可以导致实用氢经济的技术的迫使。现有的H2生成过程遭受了高电解成本或蒸汽甲烷(天然气)改革产生的高二氧化碳排放。在这个项目中,提出了一种根本不同的替代方法,以在废弃的砂岩油储层中产生H2,以便在表面上提取H2,而所有含碳化合物(包括CO2)则永久锁定在储层中。这种方法的关键创新是,EM/微波功率将被辐射到基础反应区域,以加热和维持产生H2的热化学反应。砂岩岩矿物中的天然催化剂将通过提高H2生产反应的效率发挥协同作用。将研究替代催化剂,作为进一步增加H2产量的一种手段。实验验证的计算机模拟对基础层面中的反应和气流过程的仿真将在理解这一H2生产过程以及最终的石油储层规模实施中起着至关重要的作用。在该研究计划中,PIS将共同努力并修复两名研究生。尽管出版物和演讲,研究结果将被传播给公众。基于实验/仿真的研究合作将探索在石油储层中包含的em/微波辅助的H2生产过程,可替代石油储层中的蒸汽甲烷改革/水天然气转移过程,用于生产最多的家庭H2元素。该研究将研究由耦合的微波辐照,传热,流体流以及负责在微波/RF加热下将H2转化为H2的基本岩石 - 水 - 催化剂相互作用。将在储层岩层中自然发现的受控微波加热和使用催化剂下进行实验室实验,以生成描述H2生产速率的反应动力学模型。反应动力学表达式将与多孔的储层岩层形成,以及电磁(EM)辐射传播和加热现象,将气体和流体传输的多相描述结合在一起,以创建完整且验证的多尺度和多个物理学模拟器。该模拟器将用于一系列研究,从研究热点在EM加热下的分布和时间进化到储层规模优化研究。由于后者的计算成本较高,因此将开发出新型的图形中性网络(GNN)的域分解方法,以促进大规模动态模拟的并行化,从而无缝整合严格的物理驱动方法和数据驱动的方法。总体而言,研究工作将(1)阐明在EM/微波加热下阐明岩石 - 水 - 水 - 催化剂相互作用,并开发新的动力学模型,以将油转化为H2生成; (2)开发神经元网络辅助高性能模拟方法,用于对em-thermal相互作用的非线性和多物理描述; (3)确定H2生成的速率限制过程; (4)确定扩大实验结果的途径。该奖项反映了NSF的法定任务,并通过使用基金会的知识分子优点和更广泛的影响评估标准来评估,被认为是宝贵的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Su Yan其他文献

On damaged ship motion and capsizing in beam waves due to sudden water ingress using the RANS method
使用 RANS 方法研究突然进水导致的受损船舶在横波中的运动和倾覆
  • DOI:
    10.1016/j.apor.2019.102047
  • 发表时间:
    2020-02
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Gao Zhiliang;Wang Yaling;Su Yan
  • 通讯作者:
    Su Yan
An MPI-accelerated multi-solver algorithm for electromagnetic modeling of complex objects
用于复杂物体电磁建模的 MPI 加速多求解器算法
Uniaxial compression behavior and spectroscopic properties of the explosive pentaerythritol tetranitrate from first-principles calculations
根据第一性原理计算爆炸性季戊四醇四硝酸酯的单轴压缩行为和光谱特性
  • DOI:
    10.1016/j.commatsci.2018.07.019
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Su Yan;Fan Junyu;Zheng Zhaoyang;Zhao Jijun
  • 通讯作者:
    Zhao Jijun
Warming Affects Soil Nitrogen Mineralization via Changes in Root Exudation and Associated Soil Microbial Communities in a Subalpine Tree Species Abies fabri
变暖通过亚高山冷杉根系分泌物和相关土壤微生物群落的变化影响土壤氮矿化
Deep Dependency Substructure-Based Learning for Multidocument Summarization
基于深度依赖子结构的多文档摘要学习

Su Yan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Su Yan', 18)}}的其他基金

CAREER: Neural Network Enhanced Electromagnetics and Multiphysics Simulation Methods for RF and Microwave Reconfigurable Devices
职业:射频和微波可重构器件的神经网络增强电磁学和多物理场仿真方法
  • 批准号:
    2238124
  • 财政年份:
    2023
  • 资助金额:
    $ 46万
  • 项目类别:
    Continuing Grant
Research Initiation Award: Theoretical and Computational Methods for Robust Retrieval of Effective Electromagnetic Properties of Random Composite Materials
研究启动奖:鲁棒检索随机复合材料有效电磁特性的理论和计算方法
  • 批准号:
    2101012
  • 财政年份:
    2021
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant

相似国自然基金

气-液-颗粒三相管流相持率微波-电导联合测量方法研究
  • 批准号:
    62303097
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
微波会切霍尔推力器波场耦合过程及模式转换机理研究
  • 批准号:
    52376023
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
基于生成对抗网络和特征辅助的微波器件拓扑建模和优化方法研究
  • 批准号:
    62301229
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于单块Er/Yb晶体光频梳的高稳低噪微波合成方法研究
  • 批准号:
    62305270
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于Halbach磁场结构的微型微波离子推力器放电特性研究
  • 批准号:
    52307183
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Discovery of Molecular Probes and Therapeutic Leads: Upgrade of an Electron Paramagnetic Resonance Spectrometer
分子探针和治疗先导化合物的发现:电子顺磁共振波谱仪的升级
  • 批准号:
    10797852
  • 财政年份:
    2014
  • 资助金额:
    $ 46万
  • 项目类别:
TULANE COBRE: MOLECULAR, IMAGING AND ANALYTIC CORE
TULANE COBRE:分子、成像和分析核心
  • 批准号:
    8360253
  • 财政年份:
    2011
  • 资助金额:
    $ 46万
  • 项目类别:
CHEMICAL SYNTHESIS CORE FACILITY
化学合成核心设施
  • 批准号:
    8364932
  • 财政年份:
    2011
  • 资助金额:
    $ 46万
  • 项目类别:
TULANE COBRE: MOLECULAR, IMAGING AND ANALYTIC CORE
TULANE COBRE:分子、成像和分析核心
  • 批准号:
    7959836
  • 财政年份:
    2009
  • 资助金额:
    $ 46万
  • 项目类别:
Center of Excellence in Chemical Methodologies and Library Development
化学方法学和库开发卓越中心
  • 批准号:
    8120744
  • 财政年份:
    2003
  • 资助金额:
    $ 46万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了