Excellence in Research: Microwave-Assisted In-Situ Hydrogen Generation: Experimentation, Simulation, and Optimization

卓越的研究:微波辅助原位制氢:实验、模拟和优化

基本信息

  • 批准号:
    2247676
  • 负责人:
  • 金额:
    $ 46万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-15 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

This collaborative experimental and simulation-based research project aims to develop a new electromagnetic (EM)/microwave-assisted catalytic reaction process for in-situ hydrogen (H2) generation that takes place entirely within petroleum reservoir formations. This research is motivated by the urgent need to decarbonize our nation’s energy resources and to advance technologies that can lead to a practical hydrogen economy. Existing H2 generation processes suffer from either the high cost of water electrolysis or the high CO2 emissions generated by steam methane (natural gas) reforming. In this project, a radically different alternative is proposed to generate H2 within abandoned sandstone oil reservoirs so that only H2 is extracted at the surface, while all carbon-containing compounds (including CO2) are permanently locked within the reservoirs. The key innovation of this approach is that EM/microwave power will be radiated into the underground reaction region to heat and sustain the thermochemical reactions producing H2. Natural catalysts in sandstone rock minerals will play a synergistic role by increasing the efficiency of the H2 production reactions; alternative catalysts also will be investigated as a means of further increasing H2 production. Experimentally validated computer simulations of the reactions and gas-flow processes within the underground formations will play a crucial role in understanding this H2 production process and for the ultimate oil reservoir-scale implementations. Within this research program, two graduate students will be co-advised and mentored by the PIs. Research outcomes will be disseminated to the public though publications and presentations.This experimental/simulation-based research collaboration will explore an in-situ, EM/microwave-assisted H2 production process contained within a petroleum reservoir as an alternative to the steam methane reforming/water-gas shift process used to produce most of the domestic H2 generated today. The research will study fundamental rock-hydrocarbon-water-catalyst interactions controlled by the coupled microwave irradiation, heat transfer, fluid flows, and reactions that are responsible for the conversion of hydrocarbons and water to H2 under microwave/RF heating. Laboratory experiments under controlled microwave heating and using catalysts found naturally in reservoir rock formations will be conducted to generate reaction kinetics models describing H2 production rates. The reaction kinetics expressions will be combined with multiphase descriptions of gas and fluid transport though the porous reservoir rock formations, as well as electromagnetic (EM) radiation propagation and heating phenomena, to create a complete and validated multiscale and multiphysics simulator. This simulator will be used for a range of studies, from investigating the distribution and time-evolution of hotspots under EM heating to reservoir-scale optimization studies. Because of the exceedingly high computational cost of the latter, novel graph neural network (GNN)-based domain decomposition methods will be developed to facilitate parallelization of the large-scale dynamic simulations, resulting in a seamless integration of rigorous physics-driven methods and data-driven methods. Overall, the research efforts will (1) elucidate rock-hydrocarbon-water-catalyst interactions under EM/microwave heating and develop new kinetic models for oil conversion to H2 generation; (2) develop neural network assisted high performance simulation methods for nonlinear and multiphysics descriptions of EM-thermal interaction; (3) identify the rate-limiting processes for H2 generation; and (4) identify pathways to scale-up of experimental results.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个基于实验和模拟的合作研究项目旨在开发一种新的电磁(EM)/微波辅助催化反应过程,用于完全在石油储层内发生的原位氢气(H2)生成这项研究的动机是紧迫的。需要使我们国家的能源资源脱碳,并推进能够实现实用氢经济的技术,现有的制氢工艺要么受到水电解成本高的影响,要么受到蒸汽甲烷(天然)产生的高二氧化碳排放的影响。在该项目中,提出了一种完全不同的替代方案,在废弃的砂岩油藏中产生氢气,以便仅在地表提取氢气,而所有含碳化合物(包括二氧化碳)都被永久锁定在油藏中。该方法的创新之处在于,电磁/微波功率将辐射到地下反应区域,以加热并维持砂岩矿物中产生氢气的热化学反应,从而提高反应效率,从而发挥协同作用。氢气生产反应;还将研究替代催化剂,作为进一步增加氢气产量的方法,对地下地层内的反应和气流过程进行实验验证的计算机模拟将在理解氢气生产过程和最终结果方面发挥至关重要的作用。在该研究项目中,两位研究生将共同接受指导,并由 PI 指导实施。研究成果将通过出版物和演示向公众传播。这项基于实验/模拟的研究合作将探索一个石油产品储层内包含的原位电磁/微波辅助氢气生产工艺,可替代目前用于大多数国内氢气生产的蒸汽甲烷重整/水煤气变换工艺。该研究将研究基础岩石碳氢化合物。 -由耦合微波辐射、传热、流体流动和反应控制的水-催化剂相互作用,这些相互作用负责在微波/射频加热下将碳氢化合物和水转化为H2在受控微波加热和使用催化剂的实验室实验中。储层岩层中天然存在的化学反应将被用来生成描述氢气生产率的反应动力学模型,反应动力学表达式将与多孔储层岩层中气体和流体传输以及电磁(EM)辐射传播的多相描述相结合。和加热现象,以创建一个完整且经过验证的多尺度和多物理场模拟器。该模拟器将用于研究电磁加热下热点的分布和时间演化等一系列研究。由于后者的计算成本极高,因此将开发基于图神经网络(GNN)的新型域分解方法,以促进大规模动态模拟的并行化,从而实现无缝集成。总体而言,研究工作将(1)阐明电磁/微波加热下的岩石-碳氢化合物-水-催化剂相互作用,并开发石油转化为氢气生成的新动力学模型;神经的用于电磁热相互作用的非线性和多物理场描述的网络辅助高性能模拟方法;(3) 确定氢气生成的速率限制过程;(4) 确定扩大实验结果的途径。该奖项反映了 NSF 的法定使命通过使用基金会的智力价值和更广泛的影响审查标准进行评估,并被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Su Yan其他文献

On damaged ship motion and capsizing in beam waves due to sudden water ingress using the RANS method
使用 RANS 方法研究突然进水导致的受损船舶在横波中的运动和倾覆
  • DOI:
    10.1016/j.apor.2019.102047
  • 发表时间:
    2020-02
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Gao Zhiliang;Wang Yaling;Su Yan
  • 通讯作者:
    Su Yan
A neurodynamic approach to compute the generalized eigenvalues of symmetric positive matrix pair
计算对称正矩阵对广义特征值的神经动力学方法
  • DOI:
    10.1016/j.neucom.2019.06.016
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Jiqiang Feng;Su Yan;Sitian Qin;Wen Han
  • 通讯作者:
    Wen Han
Deep Dependency Substructure-Based Learning for Multidocument Summarization
基于深度依赖子结构的多文档摘要学习
Three-dimensional TiO2 nanotube arrays combined with g-C3N4 quantum dots for visible light-driven photocatalytic hydrogen production
三维TiO2纳米管阵列与g-C3N4量子点相结合用于可见光驱动光催化制氢
  • DOI:
    10.1039/c7ra00039a
  • 发表时间:
    2017-02
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Zhang Qi;Wang Hua;Chen Shuo;Su Yan;Quan Xie
  • 通讯作者:
    Quan Xie
Efficient MO Dye Degradation Catalyst of Cu(I)-Based Coordination Complex from Dissolution-Recrystallization Structural Transformation
基于溶解-重结晶结构转变的 Cu(I) 基配位配合物的高效 MO 染料降解催化剂
  • DOI:
    10.1021/acs.cgd.0c01216
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Zhang Zi-You;Zhang Guan-Dong;Sheng Xi-Xi;Ding Qian-Wen;Bai Yu-Zhuo;Su Yan;Liu Hong-Ke;Su Zhi
  • 通讯作者:
    Su Zhi

Su Yan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Su Yan', 18)}}的其他基金

CAREER: Neural Network Enhanced Electromagnetics and Multiphysics Simulation Methods for RF and Microwave Reconfigurable Devices
职业:射频和微波可重构器件的神经网络增强电磁学和多物理场仿真方法
  • 批准号:
    2238124
  • 财政年份:
    2023
  • 资助金额:
    $ 46万
  • 项目类别:
    Continuing Grant
Research Initiation Award: Theoretical and Computational Methods for Robust Retrieval of Effective Electromagnetic Properties of Random Composite Materials
研究启动奖:鲁棒检索随机复合材料有效电磁特性的理论和计算方法
  • 批准号:
    2101012
  • 财政年份:
    2021
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant

相似国自然基金

微流控协同微波传感检测循环肿瘤细胞及其调控机制研究
  • 批准号:
    52306100
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于微波耦合沸石分子筛的有机固废热解产物定向调控机制研究
  • 批准号:
    22373035
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
低温烧结中低介微波介质陶瓷的损耗抑制与太赫兹介电响应机理研究
  • 批准号:
    52372102
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
微波辐射计定标链路中近场亮温传递过程的定量计算方法与优化机理研究
  • 批准号:
    62371031
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
面向车载微波毫米波双模通信系统的一体化天线技术研究与验证
  • 批准号:
    62301152
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Discovery of Molecular Probes and Therapeutic Leads: Upgrade of an Electron Paramagnetic Resonance Spectrometer
分子探针和治疗先导化合物的发现:电子顺磁共振波谱仪的升级
  • 批准号:
    10797852
  • 财政年份:
    2014
  • 资助金额:
    $ 46万
  • 项目类别:
TULANE COBRE: MOLECULAR, IMAGING AND ANALYTIC CORE
TULANE COBRE:分子、成像和分析核心
  • 批准号:
    8360253
  • 财政年份:
    2011
  • 资助金额:
    $ 46万
  • 项目类别:
CHEMICAL SYNTHESIS CORE FACILITY
化学合成核心设施
  • 批准号:
    8364932
  • 财政年份:
    2011
  • 资助金额:
    $ 46万
  • 项目类别:
TULANE COBRE: MOLECULAR, IMAGING AND ANALYTIC CORE
TULANE COBRE:分子、成像和分析核心
  • 批准号:
    7959836
  • 财政年份:
    2009
  • 资助金额:
    $ 46万
  • 项目类别:
Center of Excellence in Chemical Methodologies and Library Development
化学方法学和库开发卓越中心
  • 批准号:
    8120744
  • 财政年份:
    2003
  • 资助金额:
    $ 46万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了