III: Medium: A Data-driven and AI-augmented Framework for Collaborative Decision Making to Combat Infectious Disease Outbreaks

III:媒介:数据驱动和人工智能增强的框架,用于对抗传染病爆发的协作决策

基本信息

  • 批准号:
    2217239
  • 负责人:
  • 金额:
    $ 119.24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-11-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

Infectious disease outbreaks, such as the novel coronavirus disease (COVID-19) pandemic, entailed localized conditions with evolution in time and space present a daunting task for policy and decision makers in finding optimal non-pharmaceutical intervention (NPI) strategies at different scales that balance epidemiological benefits and socioeconomic costs. To help tackle this challenging problem, by harnessing the data revolution and advancing capabilities of artificial intelligence (AI), this multidisciplinary project aims to design and develop a data-driven and AI-augmented framework that is tailored to the evolving localized conditions and enables expert-in-the-loop for adaptive NPIs to effectively respond to the dynamics of epidemic while balancing the multidimensional socioeconomic impacts. The proposed work will not only benefit local and federal governments, regional communities, corporations, societal leaders and the public by assisting with effective responses to the public health issues while mitigating negative socioeconomic impacts and various induced crises, but will also facilitate the development of robust science-based decision support systems responding to future natural or man-made disasters. The research will be beneficial to multidisciplinary areas, including data science, machine learning, epidemiology, economics, social and behavioral sciences. The outcomes (e.g., open-source code, data, and models) will be made publicly accessible and broadly distributed through publications, media presses, etc. This project will integrate research with education, including novel curriculum development, student mentoring, professional training and workforce development, and K-12 outreach activities aimed at underrepresented groups.To combat infectious disease outbreaks with robust response planning, this project includes four interconnected research components to develop an intelligent and interactive decision support framework that allows in silico exploration of extensive possible NPIs prior to the potential field implementation phase. First, the team will develop a novel spatial-temporal heterogeneous graph model to abstract dynamics of harnessed multi-source data. Second, the team will develop new techniques to learn node (i.e., area) representations over the constructed graph by integrating both spatial and temporal dependencies while preserving the heterogeneity. Third, based on the learned node representations, given a set of NPIs, the team will design and develop an innovative NPI-aware multi-head transformer for multi-task prediction (i.e., forecasting epidemic dynamics and associated socioeconomic impacts). Fourth, based on the predictions, the team will develop a novel multi-agent reinforcement learning model with inverse reward learning to enable expert-in-the-loop in finding optimal sequential NPIs that balance epidemiological benefits and socioeconomic costs under certain constraints and objectives set by policy and decision makers. The research will advance the field of information integration and informatics through the development of a series of original works including novel deep graph learning techniques with the context of heterogeneous and dynamic graph structures, which will also provide foundational work for addressing similar challenges for future natural or man-made disasters.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
新型冠状病毒病(COVID-19)大流行等传染病的爆发,伴随着时间和空间上的演变,导致了局部情况的发生,这对政策和决策者来说是一项艰巨的任务,需要在不同规模上寻找最佳的非药物干预(NPI)策略,平衡流行病学效益和社会经济成本。为了帮助解决这一具有挑战性的问题,通过利用数据革命和人工智能 (AI) 的先进能力,这个多学科项目旨在设计和开发一个数据驱动和人工智能增强的框架,该框架适合不断变化的当地条件,并使专家能够适应性非营利机构在循环中有效应对流行病动态,同时平衡多维社会经济影响。拟议的工作不仅有助于有效应对公共卫生问题,同时减轻负面社会经济影响和各种引发的危机,使地方和联邦政府、地区社区、企业、社会领袖和公众受益,而且还将促进强有力的发展应对未来自然或人为灾害的基于科学的决策支持系统。该研究将有益于多学科领域,包括数据科学、机器学习、流行病学、经济学、社会和行为科学。成果(例如开源代码、数据和模型)将通过出版物、媒体出版社等公开并广泛分发。该项目将研究与教育相结合,包括新颖的课程开发、学生指导、专业培训和劳动力发展,以及针对代表性不足群体的 K-12 外展活动。为了通过强有力的应对计划来应对传染病的爆发,该项目包括四个相互关联的研究部分,以开发一个智能和交互式决策支持框架,允许在计算机上探索广泛的可能的 NPI在势场实施阶段之前。首先,该团队将开发一种新颖的时空异构图模型来抽象所利用的多源数据的动态。其次,该团队将开发新技术,通过集成空间和时间依赖性,同时保留异质性,来学习构建的图上的节点(即区域)表示。第三,基于学习到的节点表示,给定一组 NPI,该团队将设计和开发一种创新的 NPI 感知多头变压器,用于多任务预测(即预测流行病动态和相关的社会经济影响)。第四,根据预测,该团队将开发一种具有逆向奖励学习的新型多智能体强化学习模型,使专家能够找到最佳的顺序 NPI,在一定的约束和目标设定下平衡流行病学效益和社会经济成本由政策和决策者。该研究将通过开发一系列原创作品,包括在异构和动态图结构背景下的新颖的深度图学习技术,推动信息集成和信息学领域的发展,这也将为解决未来自然或动态的类似挑战提供基础工作。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(30)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Rep2Vec: Repository Embedding via Heterogeneous Graph Adversarial Contrastive Learning
Rep2Vec:通过异构图对抗性对比学习进行存储库嵌入
Few-Shot Learning on Graphs: A Survey
图上的少样本学习:一项调查
Hyperbolic Graph Attention Network
双曲图注意力网络
  • DOI:
    10.1109/tbdata.2021.3081431
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    7.2
  • 作者:
    Zhang, Yiding;Wang, Xiao;Shi, Chuan;Jiang, Xunqiang;Ye, Yanfang
  • 通讯作者:
    Ye, Yanfang
Differentially private binary- and matrix-valued data query: an XOR mechanism
差分私有二进制和矩阵值数据查询:XOR 机制
  • DOI:
    10.14778/3446095.3446106
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Ji, Tianxi;Li, Pan;Yilmaz, Emre;Ayday, Erman;Ye, Yanfang;Sun, Jinyuan
  • 通讯作者:
    Sun, Jinyuan
Heterogeneous Information Network Embedding with Adversarial Disentangler
具有对抗性解缠器的异构信息网络嵌入
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yanfang Ye其他文献

Adversarial Cross-View Disentangled Graph Contrastive Learning
对抗性跨视图解缠图对比学习
  • DOI:
    10.48550/arxiv.2209.07699
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qianlong Wen;Z. Ouyang;Chunhui Zhang;Y. Qian;Yanfang Ye;Chuxu Zhang
  • 通讯作者:
    Chuxu Zhang
Pob1 participates in the Cdc42 regulation of fission yeast actin cytoskeleton.
Pob1 参与裂殖酵母肌动蛋白细胞骨架的 Cdc42 调节。
  • DOI:
    10.1091/mbc.e09-03-0207
  • 发表时间:
    2009-10-15
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Sergio A. Rincon;Yanfang Ye;M. A. Villar;B. Santos;Sophie G. Martin;P. Pérez
  • 通讯作者:
    P. Pérez
αCyber: Enhancing Robustness of Android Malware Detection System against Adversarial Attacks on Heterogeneous Graph based Model
αCyber​​:增强 Android 恶意软件检测系统针对基于异构图模型的对抗性攻击的鲁棒性
Fair Graph Representation Learning via Diverse Mixture-of-Experts
通过不同的专家组合进行公平图表示学习
  • DOI:
    10.1145/3543507.3583207
  • 发表时间:
    2023-04-30
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zheyuan Liu;Chunhui Zhang;Yijun Tian;Erchi Zhang;Chao Huang;Yanfang Ye;Chuxu Zhang
  • 通讯作者:
    Chuxu Zhang
Ensemble Clustering for Internet Security Applications
互联网安全应用的集成集群

Yanfang Ye的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yanfang Ye', 18)}}的其他基金

III: Small: A New Machine Learning Paradigm Towards Effective yet Efficient Foundation Graph Learning Models
III:小型:一种新的机器学习范式,实现有效且高效的基础图学习模型
  • 批准号:
    2321504
  • 财政年份:
    2023
  • 资助金额:
    $ 119.24万
  • 项目类别:
    Standard Grant
EAGER: A New Explainable Multi-objective Learning Framework for Personalized Dietary Recommendations against Opioid Misuse and Addiction
EAGER:一种新的可解释的多目标学习框架,用于针对阿片类药物滥用和成瘾的个性化饮食建议
  • 批准号:
    2334193
  • 财政年份:
    2023
  • 资助金额:
    $ 119.24万
  • 项目类别:
    Standard Grant
D-ISN: An AI-augmented Framework to Detect, Disrupt, and Dismantle Opioid Trafficking Networks
D-ISN:用于检测、破坏和拆除阿片类药物贩运网络的人工智能增强框架
  • 批准号:
    2146076
  • 财政年份:
    2022
  • 资助金额:
    $ 119.24万
  • 项目类别:
    Standard Grant
III: Small: Mining Heterogeneous Network Built from Multiple Data Sources to Reduce Opioid Overdose Risks
III:小型:挖掘由多个数据源构建的异构网络以减少阿片类药物过量风险
  • 批准号:
    2214376
  • 财政年份:
    2021
  • 资助金额:
    $ 119.24万
  • 项目类别:
    Standard Grant
EAGER: A Holistic Heterogeneous Temporal Graph Transformer Framework with Meta-learning to Combat Opioid Epidemic
EAGER:利用元学习对抗阿片类药物流行病的整体异构时间图转换器框架
  • 批准号:
    2203262
  • 财政年份:
    2021
  • 资助金额:
    $ 119.24万
  • 项目类别:
    Standard Grant
EAGER: An AI-driven Paradigm for Collective and Collaborative Community Resilience in the COVID-19 Era and Beyond
EAGER:COVID-19 时代及以后的集体和协作社区复原力的人工智能驱动范式
  • 批准号:
    2209814
  • 财政年份:
    2021
  • 资助金额:
    $ 119.24万
  • 项目类别:
    Standard Grant
CAREER: Securing Cyberspace: Gaining Deep Insights into the Online Underground Ecosystem
职业:保护网络空间:深入了解在线地下生态系统
  • 批准号:
    2203261
  • 财政年份:
    2021
  • 资助金额:
    $ 119.24万
  • 项目类别:
    Continuing Grant
III: Medium: A Data-driven and AI-augmented Framework for Collaborative Decision Making to Combat Infectious Disease Outbreaks
III:媒介:数据驱动和人工智能增强的框架,用于对抗传染病爆发的协作决策
  • 批准号:
    2107172
  • 财政年份:
    2021
  • 资助金额:
    $ 119.24万
  • 项目类别:
    Continuing Grant
CICI: SSC: SciTrust: Enhancing Security for Modern Software Programming Cyberinfrastructure
CICI:SSC:SciTrust:增强现代软件编程网络基础设施的安全性
  • 批准号:
    2218762
  • 财政年份:
    2021
  • 资助金额:
    $ 119.24万
  • 项目类别:
    Standard Grant
EAGER: A Holistic Heterogeneous Temporal Graph Transformer Framework with Meta-learning to Combat Opioid Epidemic
EAGER:利用元学习对抗阿片类药物流行病的整体异构时间图转换器框架
  • 批准号:
    2140785
  • 财政年份:
    2021
  • 资助金额:
    $ 119.24万
  • 项目类别:
    Standard Grant

相似国自然基金

基于挥发性分布和氧化校正的大气半/中等挥发性有机物来源解析方法构建
  • 批准号:
    42377095
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于机器学习和经典电动力学研究中等尺寸金属纳米粒子的量子表面等离激元
  • 批准号:
    22373002
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
中等质量黑洞附近的暗物质分布及其IMRI系统引力波回波探测
  • 批准号:
    12365008
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
复合低维拓扑材料中等离激元增强光学响应的研究
  • 批准号:
    12374288
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
托卡马克偏滤器中等离子体的多尺度算法与数值模拟研究
  • 批准号:
    12371432
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目

相似海外基金

III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
  • 批准号:
    2420691
  • 财政年份:
    2024
  • 资助金额:
    $ 119.24万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Towards Effective Detection and Mitigation for Shortcut Learning: A Data Modeling Framework
协作研究:III:媒介:针对捷径学习的有效检测和缓解:数据建模框架
  • 批准号:
    2310262
  • 财政年份:
    2023
  • 资助金额:
    $ 119.24万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Towards Effective Detection and Mitigation for Shortcut Learning: A Data Modeling Framework
协作研究:III:媒介:针对捷径学习的有效检测和缓解:数据建模框架
  • 批准号:
    2310260
  • 财政年份:
    2023
  • 资助金额:
    $ 119.24万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
  • 批准号:
    2341725
  • 财政年份:
    2023
  • 资助金额:
    $ 119.24万
  • 项目类别:
    Standard Grant
III: Medium: CARE: Interactive Systems for Scalable, Causal Data Science
III:媒介:CARE:可扩展因果数据科学的交互式系统
  • 批准号:
    2312561
  • 财政年份:
    2023
  • 资助金额:
    $ 119.24万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了