IntBIO COLLABORATIVE RESEARCH: Integrating fossils, genomics, and machine learning to reveal drivers of Cretaceous innovations in flowering plants

IntBIO 协作研究:整合化石、基因组学和机器学习,揭示白垩纪开花植物创新的驱动因素

基本信息

项目摘要

The Tree of Life is marked by short periods of rapid innovation where groups emerge with dramatically altered forms and diversify quickly. This has happened multiple times throughout geologic history including with the rise of birds, mammals, the transition of plants from water to land, and the origination of flowering plants. The rapid emergence and diversification of flowering plants in particular represents one of the most remarkable episodes in the history of life on earth. However, while fundamental to understanding the ecology and evolution of modern ecosystems, this episode remains unexplained and leads to one of the grand challenges in the biological sciences – determining what processes may be responsible for such rapid changes in form and function across the Tree of Life. A major impediment to addressing this question is the availability of data and methods for analyzing those data. The goal of this study is to use and develop new machine learning approaches to gathering data for both fossil and living plant species and to use these data to help develop new techniques. These techniques will help identify what contributed to the rapid change in plants that resulted in their dominance in the environment today. This project will train undergraduates, graduate students, and postdoctoral fellows in machine learning methods, evolutionary biology, and techniques for working with both fossil and living specimens. The project will also include resource development and training for middle schoolers, high schoolers, undergraduates, and the broader research community.This project aims to evaluate the evolutionary processes underlying the emergence of innovation, using flowering plants as a case study. Specifically, the project will examine Cretaceous radiations of flowering plants characterized by rapid evolution, a rich fossil record, and the origin of innovations and lineages of great ecological significance. The central goals of the proposed research are to (a) generate a large morphological dataset for flowering plants using novel machine learning methods, (b) develop new statistical methods for modeling evolution, and (c) use these advances in data collection and methods to identify the processes that led to the episodic and rapid emergence of novelty across the Tree of Life. Collectively, these new developments in machine learning techniques, morphological data collection, and analytical techniques for addressing evolutionary processes will be potentially transformative to several fields including the biological sciences, computational biology, and machine learning. The large scope and scale of this project, together with its highly integrative nature, creates the potential to address one of the most important standing questions in evolutionary biology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
生命之树的特点是短暂的快速创新,其中群体的形态发生了巨大的变化并迅速多样化,这种情况在整个地质历史中曾多次发生,包括鸟类、哺乳动物的兴起、植物从水生到陆地的转变以及植物的进化。开花植物的起源尤其是开花植物的迅速出现和多样化代表了地球生命史上最引人注目的事件之一。然而,尽管这一事件对于理解现代生态系统的生态和进化至关重要,但它仍然无法解释和解释。导致一生物科学中的重大挑战——确定哪些过程可能导致生命之树的形式和功能发生如此快速的变化,解决这个问题的一个主要障碍是数据的可用性和分析这些数据的方法。这项研究的目的是使用和开发新的机器学习方法来收集化石和活植物物种的数据,并使用这些数据来帮助开发新技术,这些技术将有助于确定是什么导致了植物的快速变化。该项目将培训本科生、研究生。该项目还将包括针对中学生、高中生、本科生和更广泛的研究界的资源开发和培训。旨在评估创新出现背后的进化过程,具体而言,该项目将研究白垩纪开花植物的辐射,其特点是快速进化、丰富的化石记录以及创新和伟大谱系的起源。生态意义。拟议研究的中心目标是(a)使用新颖的机器学习方法生成开花植物的大型形态数据集,(b)开发用于建模进化的新统计方法,以及(c)利用数据收集和方法方面的这些进步来识别总的来说,机器学习技术、形态数据收集和用于解决进化过程的分析技术的这些新发展将可能给包括生物科学在内的多个领域带来变革。 、计算生物学和机器该项目的范围和规模及其高度综合性,创造了解决进化生物学中最重要的长期问题之一的潜力。该奖项反映了 NSF 的法定使命,并通过使用评估被认为值得支持。基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen Smith其他文献

AN EVALUATION OF FEEDYARD MANAGEMENT STRATEGIES TO OPTIMIZE CATTLE FEEDING PERFORMANCE AND ANIMAL HEALTH A Dissertation by AMANDA LYN FULLER
优化牛饲养性能和动物健康的饲养场管理策略评估 AMANDA LYN FULLER 的论文
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Hales;Stephen Smith
  • 通讯作者:
    Stephen Smith
Cell-type–specific neuromodulation guides synaptic credit assignment in a spiking neural network
细胞类型特异性神经调节指导尖峰神经网络中的突触信用分配
TEMPORAL TRENDS IN SSR ALLELE FREQUENCIES ASSOCIATED WITH LONG-TERM SELECTION FOR YIELD OF MAIZE 1
与玉米 1 产量长期选择相关的 SSR 等位基因频率的时间趋势
  • DOI:
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    L. Feng;S. Sebastian;Stephen Smith;M. Cooper
  • 通讯作者:
    M. Cooper
Potential Renewable Bioenergy Production from Canadian Agriculture
加拿大农业潜在的可再生生物能源生产
  • DOI:
    10.3384/ecp110572485
  • 发表时间:
    2011-11-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tingting Liu;B. McConkey;Stephen Smith;B. Mcgregor;T. Huffman;S. Kulshreshtha;Hong Wang
  • 通讯作者:
    Hong Wang
TO FACILITATE DISCRIMINATION OF PICTURE CARDS DURING COMMUNICATION TRAINING
促进沟通训练期间图片卡的辨别
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David M. Wilson;Scott Miller;Stephen Smith;B. Iwata
  • 通讯作者:
    B. Iwata

Stephen Smith的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen Smith', 18)}}的其他基金

Collaborative Research: BoCP-Implementation: Integrating Traits, Phylogenies and Distributional Data to Forecast Risks and Resilience of North American Plants
合作研究:BoCP-实施:整合性状、系统发育和分布数据来预测北美植物的风险和恢复力
  • 批准号:
    2325835
  • 财政年份:
    2024
  • 资助金额:
    $ 103.11万
  • 项目类别:
    Standard Grant
Collaborative Research: BEE: Bridging the ecology and evolution of East African Acacias across time and space: genomics, ecosystem, and diversification
合作研究:BEE:跨越时间和空间连接东非金合欢的生态和进化:基因组学、生态系统和多样化
  • 批准号:
    2106070
  • 财政年份:
    2021
  • 资助金额:
    $ 103.11万
  • 项目类别:
    Standard Grant
RAPID: Algorithms and Heuristics for Remote Food Delivery under Social Distancing Constraints
RAPID:社交距离约束下远程食品配送的算法和启发式
  • 批准号:
    2032262
  • 财政年份:
    2020
  • 资助金额:
    $ 103.11万
  • 项目类别:
    Standard Grant
NSFDEB-NERC: Collaborative research: Plant chemistry and its impact on diversification and habitat of plants adapted to extreme environments
NSFDEB-NERC:合作研究:植物化学及其对适应极端环境的植物多样化和栖息地的影响
  • 批准号:
    1938969
  • 财政年份:
    2020
  • 资助金额:
    $ 103.11万
  • 项目类别:
    Standard Grant
Collaborative Research: Temperate radiations and tropical dominance: the diversification and evolution of the plant clade Ericales
合作研究:温带辐射和热带优势:植物分支杜鹃花目的多样化和进化
  • 批准号:
    1917146
  • 财政年份:
    2019
  • 资助金额:
    $ 103.11万
  • 项目类别:
    Standard Grant
CIBR: Collaborative Research: Integrating data communities with BiotaPhy: a computational platform for data-intensive biodiversity research and training
CIBR:协作研究:将数据社区与 BiotaPhy 相集成:用于数据密集型生物多样性研究和培训的计算平台
  • 批准号:
    1930030
  • 财政年份:
    2019
  • 资助金额:
    $ 103.11万
  • 项目类别:
    Standard Grant
Computational Analysis of Transcription and Alternative Splicing Events in Squamous Cell Cancer.
鳞状细胞癌转录和选择性剪接事件的计算分析。
  • 批准号:
    MR/R001146/1
  • 财政年份:
    2018
  • 资助金额:
    $ 103.11万
  • 项目类别:
    Fellowship
IIS-RI: ICAPS 2016 Doctoral Consortium Travel Awards
IIS-RI:ICAPS 2016 博士联盟旅行奖
  • 批准号:
    1630144
  • 财政年份:
    2016
  • 资助金额:
    $ 103.11万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Connecting resources to enable large-scale biodiversity analyses.
合作研究:ABI 创新:连接资源以实现大规模生物多样性分析。
  • 批准号:
    1458466
  • 财政年份:
    2015
  • 资助金额:
    $ 103.11万
  • 项目类别:
    Standard Grant
Collaborative Research: School Segregation and Resegregation: Using Case Studies and Public Polls to Understand Citizen Attitudes
合作研究:学校隔离和重新隔离:利用案例研究和公众民意调查来了解公民的态度
  • 批准号:
    1527762
  • 财政年份:
    2015
  • 资助金额:
    $ 103.11万
  • 项目类别:
    Standard Grant

相似国自然基金

面向开放环境的无人潜航器集群自适应协作控制方法研究
  • 批准号:
    62306211
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向实时视频分析的端云协作无服务器计算资源管理方法研究
  • 批准号:
    62302292
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于多组学数据的DNA甲基化与组蛋白修饰协作调控研究
  • 批准号:
    62371347
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
智能建造“人机协作”场景下高龄建筑工人胜任力的影响机理与增强方法研究
  • 批准号:
    72301131
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向自主认知与群智协作的多智能体制造系统关键技术研究
  • 批准号:
    52305539
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: IntBIO: Rules for cell membranes in the extremes of the deep sea
合作研究:IntBIO:深海极端条件下细胞膜的规则
  • 批准号:
    2316458
  • 财政年份:
    2023
  • 资助金额:
    $ 103.11万
  • 项目类别:
    Standard Grant
IntBIO Collaborative Research: Assessing drivers of the nitrogen-fixing symbiosis at continental scales
IntBIO 合作研究:评估大陆尺度固氮共生的驱动因素
  • 批准号:
    2316268
  • 财政年份:
    2023
  • 资助金额:
    $ 103.11万
  • 项目类别:
    Standard Grant
IntBIO Collaborative Research: Assessing drivers of the nitrogen-fixing symbiosis at continental scales
IntBIO 合作研究:评估大陆尺度固氮共生的驱动因素
  • 批准号:
    2316269
  • 财政年份:
    2023
  • 资助金额:
    $ 103.11万
  • 项目类别:
    Standard Grant
IntBIO: Collaborative Research: Phenotypes of the Anthropocene: integrating the consequences of sensory stressors across biological scales
IntBIO:合作研究:人类世的表型:整合跨生物尺度的感觉压力源的后果
  • 批准号:
    2316364
  • 财政年份:
    2023
  • 资助金额:
    $ 103.11万
  • 项目类别:
    Standard Grant
Collaborative Research: IntBIO: Micro level oxygen transport mechanisms in elite diving mammals: Capillary RBC to myofiber
合作研究:IntBIO:精英潜水哺乳动物的微水平氧运输机制:毛细血管红细胞到肌纤维
  • 批准号:
    2316378
  • 财政年份:
    2023
  • 资助金额:
    $ 103.11万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了