Collaborative Research: PPoSS: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大规模声明性分析的全栈方法
基本信息
- 批准号:2217037
- 负责人:
- 金额:$ 8.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Declarative programming languages permit users to define a problem's rules and goals, and the structure of a valid solution, automating the mechanics of computation within their implementations. Such expressive programming systems provide an opportunity for non-experts to immediately scale their analytic tasks to massive datasets, leveraging AI-based programming. The project's novelties are a set of techniques, integrating novel optimizations across the full computation stack, that deliver orders-of-magnitude scalability enhancements to declarative programming. The project's impacts are centered on permitting non-specialists to scale sophisticated deductive inference algorithms to the next generation of cloud-based clusters and supercomputers.Linguistically, the project's approach is based on a key semantic extension to Datalog to support indexing for structured inductive data. While algebraic data is supported in currently existing Datalog engines (e.g., Souffle), the project’s novel approach also materializes indices for all such ADTs, enabling orders-of-magnitude algorithmic improvements in runtimes of queries over algebraic data. Operationally, the project advances state-of-the-art implementation strategies based on parallel relational algebra, which enables off-the-shelf data parallelism that rapidly scales to many-core clusters and supercomputers via MPI. The project seeks to integrate each of these technologies to scale key applications---including program analysis and security auditing---and demonstrate their application to large datasets enabled via the project’s unique synthesis of these technologies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
声明性编程语言允许用户定义问题的规则和目标以及有效解决方案的结构,在其实现中自动执行计算机制,这种表达性编程系统为非专家提供了立即扩展其分析任务的机会。大规模数据集,利用基于人工智能的编程。该项目的新颖之处在于一系列技术,在整个计算堆栈中集成了新颖的优化,为声明式编程提供了数量级的可扩展性增强。该项目的影响集中在允许非专家将复杂的演绎推理算法扩展到下一代基于云的集群和超级计算机。在语言上,该项目的方法基于 Datalog 的关键语义扩展,以支持结构化归纳数据的索引。虽然当前现有的 Datalog 引擎(例如 Souffle)支持代数数据,但该项目的新颖方法还为所有此类 ADT 实现了索引,从而实现了数量级代数数据查询运行时的算法改进在操作上,该项目提出了基于并行关系代数的最先进的实施策略,这使得现成的数据并行性能够通过快速扩展到多核集群和超级计算机。 MPI。该项目旨在整合这些技术以扩展关键应用程序(包括程序分析和安全审计),并通过该项目对这些技术的独特综合来展示它们在大型数据集上的应用。该奖项反映了通过使用基金会的智力价值和更广泛的影响审查标准进行评估,NSF 的法定使命被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kristopher Micinski其他文献
Kristopher Micinski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kristopher Micinski', 18)}}的其他基金
Travel: Student Travel for the Programming Languages Mentoring Workshop (PLMW) at the International Conference on Functional Programming (ICFP)
旅行:参加国际函数式编程会议 (ICFP) 编程语言指导研讨会 (PLMW) 的学生旅行
- 批准号:
2328059 - 财政年份:2023
- 资助金额:
$ 8.38万 - 项目类别:
Standard Grant
Travel: Student Travel for the Programming Languages Mentoring Workshop (PLMW) at the International Conference on Functional Programming (ICFP)
旅行:参加国际函数式编程会议 (ICFP) 编程语言指导研讨会 (PLMW) 的学生旅行
- 批准号:
2328059 - 财政年份:2023
- 资助金额:
$ 8.38万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
- 批准号:
2316159 - 财政年份:2023
- 资助金额:
$ 8.38万 - 项目类别:
Continuing Grant
相似国自然基金
IGF-1R调控HIF-1α促进Th17细胞分化在甲状腺眼病发病中的机制研究
- 批准号:82301258
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CTCFL调控IL-10抑制CD4+CTL旁观者激活促口腔鳞状细胞癌新辅助免疫治疗抵抗机制研究
- 批准号:82373325
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
RNA剪接因子PRPF31突变导致人视网膜色素变性的机制研究
- 批准号:82301216
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
血管内皮细胞通过E2F1/NF-kB/IL-6轴调控巨噬细胞活化在眼眶静脉畸形中的作用及机制研究
- 批准号:82301257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多元原子间相互作用的铝合金基体团簇调控与强化机制研究
- 批准号:52371115
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
- 批准号:
2316202 - 财政年份:2023
- 资助金额:
$ 8.38万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: LARGE: Principles and Infrastructure of Extreme Scale Edge Learning for Computational Screening and Surveillance for Health Care
合作研究:PPoSS:大型:用于医疗保健计算筛查和监视的超大规模边缘学习的原理和基础设施
- 批准号:
2406572 - 财政年份:2023
- 资助金额:
$ 8.38万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
- 批准号:
2316157 - 财政年份:2023
- 资助金额:
$ 8.38万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
- 批准号:
2316201 - 财政年份:2023
- 资助金额:
$ 8.38万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: LARGE: General-Purpose Scalable Technologies for Fundamental Graph Problems
合作研究:PPoSS:大型:解决基本图问题的通用可扩展技术
- 批准号:
2316233 - 财政年份:2023
- 资助金额:
$ 8.38万 - 项目类别:
Continuing Grant