Uniformization of non-uniform geometries
非均匀几何形状的均匀化
基本信息
- 批准号:2247364
- 负责人:
- 金额:$ 22.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Recent decades have witnessed increased interest in the understanding of fractal and random objects that exhibit non-uniform geometries. Fractals are spaces that possess either a degree of self-similarity, or roughness, or both, and randomness refers to uncertainty in these patterns. Non-uniform geometry here means that the geometric features of the given objects do not adhere to the same quantitative standards across all locations and scales. Within mathematics, substantial interest in the study of fractals comes from their applications in the theory of dynamical systems. Outside of mathematics, fractals have numerous applications, for instance, in antenna design, terrain analysis, and target recognition. This project revolves around questions and problems regarding surface uniformization and simultaneous conformal welding, in particular, in the presence of randomness. The principal investigator will adapt and extend conformal uniformization and welding techniques to new non-uniform and fractal dynamical settings. The investigator also intends to mentor students at various levels, from high school to Ph.D., and foster research in the actively evolving field of fractal geometry and dynamics. The geometrically non-uniform objects considered in this project are metric curves and spaces that are not quasisymmetrically equivalent to circles, equilateral triangulations, etc. Examples of such spaces are abundant in the dynamics of quadratic polynomials, in conformal welding problems, and in random uniformization. One specific goal of the project is to introduce a new class of random surfaces spread over the sphere and to consider the type problem for surfaces of this class. In the case when such surfaces are (almost surely) parabolic, the value distribution properties of associated functions, particularly the order of growth of such functions, will be investigated. Another goal is to develop simultaneous conformal welding tools and techniques that in turn will extend recent results on merging reflection groups with critically fixed anti-rational maps. The methods to be employed are complex analytic in nature. Success in this project will result in new contributions to the growing literature on random surface uniformization and conformal welding, will raise new questions in random value distribution, and will develop new tools which go beyond those employed in current methodology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
近几十年来,人们对理解具有不均匀几何形状的分形和随机物体越来越感兴趣。分形是具有一定程度的自相似性或粗糙度或两者兼而有之的空间,随机性是指这些模式中的不确定性。这里的不均匀几何意味着给定对象的几何特征在所有位置和尺度上不遵循相同的定量标准。在数学领域,人们对分形研究的浓厚兴趣来自于它们在动力系统理论中的应用。除了数学之外,分形还有许多应用,例如天线设计、地形分析和目标识别。该项目围绕有关表面均匀化和同步保形焊接的疑问和问题,特别是在存在随机性的情况下。首席研究员将调整和扩展共形均匀化和焊接技术,以适应新的非均匀和分形动力学设置。研究人员还打算指导从高中到博士等各个级别的学生,并促进积极发展的分形几何和动力学领域的研究。本项目中考虑的几何非均匀对象是不准对称等价于圆、等边三角剖分等的度量曲线和空间。此类空间的例子在二次多项式动力学、保形焊接问题和随机均匀化中非常丰富。该项目的一个具体目标是引入一类分布在球体上的新随机曲面,并考虑此类曲面的类型问题。在此类表面(几乎肯定)是抛物线的情况下,将研究相关函数的值分布特性,特别是此类函数的增长顺序。另一个目标是开发同步保形焊接工具和技术,从而扩展最近将反射组与严格固定的反有理图合并的结果。所采用的方法本质上是复杂的分析。该项目的成功将为不断增长的随机表面均匀化和保形焊接文献做出新的贡献,将提出随机值分布的新问题,并将开发超越当前方法中使用的新工具。该奖项反映了 NSF 的法定使命通过使用基金会的智力价值和更广泛的影响审查标准进行评估,并被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sergiy Merenkov其他文献
Sergiy Merenkov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sergiy Merenkov', 18)}}的其他基金
Geometric Properties of Fractals That Arise in Various Dynamical Settings
各种动态环境中出现的分形的几何性质
- 批准号:
1800180 - 财政年份:2018
- 资助金额:
$ 22.37万 - 项目类别:
Continuing Grant
Quasisymmetric deformations of topologically planar fractal spaces
拓扑平面分形空间的拟对称变形
- 批准号:
1001144 - 财政年份:2010
- 资助金额:
$ 22.37万 - 项目类别:
Standard Grant
Uniformization and Rigidity of Sierpinski Carpets and Schottky Sets
谢尔宾斯基地毯和肖特基集的均匀化和刚性
- 批准号:
0653439 - 财政年份:2007
- 资助金额:
$ 22.37万 - 项目类别:
Standard Grant
Determining Analytic Properties of Maps from Non-Analytic Data
从非分析数据确定地图的分析属性
- 批准号:
0703617 - 财政年份:2006
- 资助金额:
$ 22.37万 - 项目类别:
Standard Grant
Determining Analytic Properties of Maps from Non-Analytic Data
从非分析数据确定地图的分析属性
- 批准号:
0400636 - 财政年份:2004
- 资助金额:
$ 22.37万 - 项目类别:
Standard Grant
相似国自然基金
非小细胞肺癌MECOM/HBB通路介导血红素代谢异常并抑制肿瘤起始细胞铁死亡的机制研究
- 批准号:82373082
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
太赫兹磁光非互易手性构筑机理与调控器件研究
- 批准号:62371258
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
长链非编码RNA PINT在血管内膜增生中的调节机制及其应用于微针球囊腔内治疗的研究
- 批准号:82300494
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
非晶过渡金属多硫化物正极材料穿梭效应消除机制及其构效关系
- 批准号:22309087
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于Fe-N-BC/PMS体系的自由基与非自由基协同降解地下水中磺胺类抗生素的机制研究
- 批准号:42377036
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
CAREER: Alternating Current Electrophoresis in Spatially Non-Uniform Electric Fields
职业:空间不均匀电场中的交流电泳
- 批准号:
2340925 - 财政年份:2024
- 资助金额:
$ 22.37万 - 项目类别:
Continuing Grant
Research on the Fundamental Mechanism of Non-Uniform Gas Detonation Propagation: Interference between Shock Waves and Heterogeneous Free Jets
气体非均匀爆震传播的基本机制研究:冲击波与非均质自由射流的干涉
- 批准号:
23KK0083 - 财政年份:2023
- 资助金额:
$ 22.37万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
ERI: Stretch Effects on Combustion Characteristics of Flames with Non-Uniform Curvature
ERI:非均匀曲率火焰燃烧特性的拉伸效应
- 批准号:
2302003 - 财政年份:2023
- 资助金额:
$ 22.37万 - 项目类别:
Standard Grant
Measuring the non-uniform surface interactions experienced by a Janus particle
测量 Janus 粒子经历的非均匀表面相互作用
- 批准号:
2314405 - 财政年份:2023
- 资助金额:
$ 22.37万 - 项目类别:
Standard Grant
Techniques for Coping with Increasingly Non-uniform Memory Architectures
应对日益不均匀的内存架构的技术
- 批准号:
RGPIN-2019-04227 - 财政年份:2022
- 资助金额:
$ 22.37万 - 项目类别:
Discovery Grants Program - Individual