Uniformization of non-uniform geometries

非均匀几何形状的均匀化

基本信息

  • 批准号:
    2247364
  • 负责人:
  • 金额:
    $ 22.37万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-01 至 2026-05-31
  • 项目状态:
    未结题

项目摘要

Recent decades have witnessed increased interest in the understanding of fractal and random objects that exhibit non-uniform geometries. Fractals are spaces that possess either a degree of self-similarity, or roughness, or both, and randomness refers to uncertainty in these patterns. Non-uniform geometry here means that the geometric features of the given objects do not adhere to the same quantitative standards across all locations and scales. Within mathematics, substantial interest in the study of fractals comes from their applications in the theory of dynamical systems. Outside of mathematics, fractals have numerous applications, for instance, in antenna design, terrain analysis, and target recognition. This project revolves around questions and problems regarding surface uniformization and simultaneous conformal welding, in particular, in the presence of randomness. The principal investigator will adapt and extend conformal uniformization and welding techniques to new non-uniform and fractal dynamical settings. The investigator also intends to mentor students at various levels, from high school to Ph.D., and foster research in the actively evolving field of fractal geometry and dynamics. The geometrically non-uniform objects considered in this project are metric curves and spaces that are not quasisymmetrically equivalent to circles, equilateral triangulations, etc. Examples of such spaces are abundant in the dynamics of quadratic polynomials, in conformal welding problems, and in random uniformization. One specific goal of the project is to introduce a new class of random surfaces spread over the sphere and to consider the type problem for surfaces of this class. In the case when such surfaces are (almost surely) parabolic, the value distribution properties of associated functions, particularly the order of growth of such functions, will be investigated. Another goal is to develop simultaneous conformal welding tools and techniques that in turn will extend recent results on merging reflection groups with critically fixed anti-rational maps. The methods to be employed are complex analytic in nature. Success in this project will result in new contributions to the growing literature on random surface uniformization and conformal welding, will raise new questions in random value distribution, and will develop new tools which go beyond those employed in current methodology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
最近的几十年目睹了对表现出不均匀几何形状的分形和随机物体的理解的兴趣。分形是具有一定程度的自相似性或粗糙度或两者的空间,并且随机性是指这些模式的不确定性。这里的不均匀几何形状意味着给定对象的几何特征并不遵守所有位置和尺度上相同的定量标准。在数学中,对分形的研究的重大兴趣来自它们在动态系统理论中的应用。在数学之外,分形具有许多应用,例如在天线设计,地形分析和目标识别中。该项目围绕着关于表面均匀化和同时焊接的问题和问题,尤其是在存在随机性的情况下。主要研究者将适应并将保形均匀化和焊接技术扩展到新的非均匀和分形动力学设置。研究人员还打算在高中到博士学位的各个级别的指导学生,并在分形几何学和动力学的积极发展领域进行研究。该项目中考虑的几何不均匀的物体是度量曲线和空间,这些空间在准对称上等同于圆,等边三角形等。此类空间的示例在二次多项式的动力学中很丰富,在互构焊接问题的动力学中,以及在随机均匀的情况下。该项目的一个具体目标是引入一类新的随机表面,分布在球体上,并考虑此类表面的类型问题。在此类表面(几乎肯定)抛物线的情况下,将研究相关功能的价值分布特性,尤其是此类功能的增长顺序。另一个目标是开发同时使用的保形焊接工具和技术,而这些工具和技术反过来将扩展有关将反射组与截然不同的反理性图合并的最新结果。所使用的方法本质上是复杂的分析。该项目的成功将为不断增长的关于随机表面均匀化和保形焊接的文献做出新的贡献,将在随机价值分配中提出新的问题,并将开发出超越当前方法中使用的工具。该奖项反映了NSF的法定任务,并通过评估该基金会的智力优点和广泛的影响来评估NSF的法定任务。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sergiy Merenkov其他文献

Sergiy Merenkov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sergiy Merenkov', 18)}}的其他基金

Geometric Properties of Fractals That Arise in Various Dynamical Settings
各种动态环境中出现的分形的几何性质
  • 批准号:
    1800180
  • 财政年份:
    2018
  • 资助金额:
    $ 22.37万
  • 项目类别:
    Continuing Grant
Quasisymmetric deformations of topologically planar fractal spaces
拓扑平面分形空间的拟对称变形
  • 批准号:
    1001144
  • 财政年份:
    2010
  • 资助金额:
    $ 22.37万
  • 项目类别:
    Standard Grant
Uniformization and Rigidity of Sierpinski Carpets and Schottky Sets
谢尔宾斯基地毯和肖特基集的均匀化和刚性
  • 批准号:
    0653439
  • 财政年份:
    2007
  • 资助金额:
    $ 22.37万
  • 项目类别:
    Standard Grant
Determining Analytic Properties of Maps from Non-Analytic Data
从非分析数据确定地图的分析属性
  • 批准号:
    0703617
  • 财政年份:
    2006
  • 资助金额:
    $ 22.37万
  • 项目类别:
    Standard Grant
Determining Analytic Properties of Maps from Non-Analytic Data
从非分析数据确定地图的分析属性
  • 批准号:
    0400636
  • 财政年份:
    2004
  • 资助金额:
    $ 22.37万
  • 项目类别:
    Standard Grant

相似国自然基金

星载SAR非沿迹场景匹配曲线成像理论与方法
  • 批准号:
    62331007
  • 批准年份:
    2023
  • 资助金额:
    237 万元
  • 项目类别:
    重点项目
线性热超构材料的非互易传热性能
  • 批准号:
    12302171
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
长链非编码RNA lnRPT通过YB1/eEF1调控心肌纤维化的功能和机理研究
  • 批准号:
    82370274
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
生物钟基因Nr1d1通过调控NLRP3焦亡通路抑制非酒精性脂肪性肝炎进展的机制研究
  • 批准号:
    82300652
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
微通道非共沸混合工质流动沸腾传热机理及模型预测
  • 批准号:
    52376149
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Alternating Current Electrophoresis in Spatially Non-Uniform Electric Fields
职业:空间不均匀电场中的交流电泳
  • 批准号:
    2340925
  • 财政年份:
    2024
  • 资助金额:
    $ 22.37万
  • 项目类别:
    Continuing Grant
Research on the Fundamental Mechanism of Non-Uniform Gas Detonation Propagation: Interference between Shock Waves and Heterogeneous Free Jets
气体非均匀爆震传播的基本机制研究:冲击波与非均质自由射流的干涉
  • 批准号:
    23KK0083
  • 财政年份:
    2023
  • 资助金额:
    $ 22.37万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
ERI: Stretch Effects on Combustion Characteristics of Flames with Non-Uniform Curvature
ERI:非均匀曲率火焰燃烧特性的拉伸效应
  • 批准号:
    2302003
  • 财政年份:
    2023
  • 资助金额:
    $ 22.37万
  • 项目类别:
    Standard Grant
Measuring the non-uniform surface interactions experienced by a Janus particle
测量 Janus 粒子经历的非均匀表面相互作用
  • 批准号:
    2314405
  • 财政年份:
    2023
  • 资助金额:
    $ 22.37万
  • 项目类别:
    Standard Grant
Techniques for Coping with Increasingly Non-uniform Memory Architectures
应对日益不均匀的内存架构的技术
  • 批准号:
    RGPIN-2019-04227
  • 财政年份:
    2022
  • 资助金额:
    $ 22.37万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了