MRI: Acquisition of a Large-Scale Real-Time Digital Simulator for Cyber-Physical Energy Systems
MRI:获取用于网络物理能源系统的大型实时数字模拟器
基本信息
- 批准号:2216294
- 负责人:
- 金额:$ 99.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This NSF MRI project aims to make the U.S. power grid resilient and cyber-secure by acquiring a simulator that will allow researchers to realistically model how power grids work in practice, incorporating events like natural disasters, communication failures, and cyber-attacks. This equipment, called a real-time digital simulator, will bring a transformative change to the field of power and energy engineering through co-simulating different power system responses (transient, dynamic, and steady-state) at large scale and simulating cascading failures with actual devices via hardware-in-the-loop (HiL) capability. This will be achieved by building a large-scale cyber-physical energy systems testbed that will enable multi-disciplinary research, education, and training. The intellectual merits of the project include developing 1) user-friendly algorithms for multi-timeframe simulation of power system responses; 2) solutions that detect and mitigate potential cyber-attacks on power grids; and 3) resilient communication systems for power grids during extreme events. The broader impacts of the project include improving the resilience and stability of the power supply against extreme events, strengthening the cybersecurity of power grids, and providing training opportunities for graduate and undergraduate students and engineers.The testbed will lead to transformative research through testing, validating, and demonstrating the developed solutions on large-scale simulators with cybersecurity, communication, and HiL capabilities. Research activities to be enabled by this testbed include 1) developing solutions for proactive resource scheduling and hardening prior to natural disasters to protect power grids from wildfires, storms, and earthquakes; 2) developing components (technical controls and configuration options) needed for secure exchange of information with blind processing and privacy preservation, thereby hardening power grid cybersecurity; 3) researching solutions for the integration of renewable energy sources, mainly by using energy storage systems to provide grid services and synthetic inertia; 4) developing methods to detect and isolate high-impedance faults, which are known to cause wildfires and power system malfunctions; 5) using unmanned aerial vehicles to assess post-disaster damages to power grids and implement the restoration of the grid; 6) developing tools for power system operators that raise situational awareness; and 7) raising understanding of microgrid islanding and autonomous operation capabilities in cases of severe power outages.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该 NSF MRI 项目旨在通过获取模拟器来提高美国电网的弹性和网络安全性,该模拟器将使研究人员能够真实地模拟电网在实践中的工作方式,包括自然灾害、通信故障和网络攻击等事件。该设备被称为实时数字模拟器,通过大规模联合模拟不同电力系统响应(暂态、动态和稳态)并模拟级联故障,将为电力和能源工程领域带来革命性的变化。通过硬件在环 (HiL) 功能来控制实际设备。这将通过建立一个大规模的网络物理能源系统测试平台来实现,该测试平台将实现多学科研究、教育和培训。该项目的智力优势包括开发 1) 用于电力系统响应的多时间帧仿真的用户友好算法; 2)检测和减轻对电网潜在网络攻击的解决方案; 3)极端事件期间电网的弹性通信系统。该项目更广泛的影响包括提高电力供应应对极端事件的弹性和稳定性,加强电网的网络安全,以及为研究生、本科生和工程师提供培训机会。该测试平台将通过测试、验证来推动变革性研究。 ,并在具有网络安全、通信和 HiL 功能的大型模拟器上展示开发的解决方案。该测试平台将支持的研究活动包括:1)在自然灾害发生之前开发主动资源调度和强化的解决方案,以保护电网免受野火、风暴和地震的影响; 2)开发安全信息交换、盲处理和隐私保护所需的组件(技术控制和配置选项),从而强化电网网络安全; 3)研究可再生能源并网解决方案,主要利用储能系统提供电网服务和综合惯性; 4)开发检测和隔离高阻抗故障的方法,这些故障已知会导致野火和电力系统故障; 5)利用无人机评估电网灾后受损情况并实施电网恢复; 6)为电力系统运营商开发提高态势感知的工具; 7) 提高对微电网孤岛和严重停电情况下自主运行能力的了解。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mohammed Ben-Idris其他文献
Mohammed Ben-Idris的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mohammed Ben-Idris', 18)}}的其他基金
CAREER: Reliability and Resilience Assurance of Cyber-Physical Energy Systems
职业:网络物理能源系统的可靠性和弹性保证
- 批准号:
2404872 - 财政年份:2023
- 资助金额:
$ 99.36万 - 项目类别:
Continuing Grant
CAREER: Reliability and Resilience Assurance of Cyber-Physical Energy Systems
职业:网络物理能源系统的可靠性和弹性保证
- 批准号:
1847578 - 财政年份:2019
- 资助金额:
$ 99.36万 - 项目类别:
Continuing Grant
相似国自然基金
高磁感取向硅钢表面氧化层内传质与获得抑制剂演变机理研究
- 批准号:52374316
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
- 批准号:32371616
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
脚手架蛋白RanBP9通过调控细胞周期停滞和获得SASP介导应激性衰老促进AKI向CKD转化的作用及机制
- 批准号:82300777
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SIRT3-SOD2-mtROS信号轴调控骨骼肌自噬在脓毒症相关获得性肌无力中的作用及机制研究
- 批准号:82360382
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
KRAS(G12D)抑制剂在胰腺癌中获得性耐药的机制研究
- 批准号:82373331
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
MRI: Acquisition of the LanguageLens for Large-Scale Language Modeling
MRI:获取用于大规模语言建模的 LanguageLens
- 批准号:
2214708 - 财政年份:2022
- 资助金额:
$ 99.36万 - 项目类别:
Standard Grant
MRI: Acquisition of a Computing System for Large Simulation Data Sets in Multimessenger Astrophysics
MRI:获取多信使天体物理学中大型模拟数据集的计算系统
- 批准号:
2018420 - 财政年份:2020
- 资助金额:
$ 99.36万 - 项目类别:
Standard Grant
MRI: Acquisition of a Large High-Temperature Vacuum Press for Advanced Materials Research, Manufacturing and Training at NC State University
MRI:北卡罗来纳州立大学购买大型高温真空压机用于先进材料研究、制造和培训
- 批准号:
2019032 - 财政年份:2020
- 资助金额:
$ 99.36万 - 项目类别:
Standard Grant
MRI Acquisition of a High Performance Large Memory Computing Cluster for Large Scale Data-Driven Research
用于大规模数据驱动研究的高性能大内存计算集群的 MRI 采集
- 批准号:
1919452 - 财政年份:2019
- 资助金额:
$ 99.36万 - 项目类别:
Standard Grant
MRI: Acquisition of a Large-Scale, High-Throughput, Electron Beam Lithography System for Multi-Scale Patterning
MRI:获取用于多尺度图案化的大规模、高通量电子束光刻系统
- 批准号:
1919866 - 财政年份:2019
- 资助金额:
$ 99.36万 - 项目类别:
Standard Grant