Classification and invariants for Borel equivalence relations
Borel 等价关系的分类和不变量
基本信息
- 批准号:2246746
- 负责人:
- 金额:$ 16.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
A common thread through mathematics is the problem of classifying a collection of objects up to some notion of equivalence. A successful classification of these objects would be a simple list of properties, which are easy to observe, so that two objects which have the same properties will in fact be equivalent. A central aim of this project is to further develop the theory of "Borel equivalence relations". This is a field of study which provides a rigorous framework to analyze the complexity of various classification problems in mathematics and to determine when a successful classification is possible or not. This project will expand the theory, develop new methods, and apply these to study various classification problems in mathematics. The PI will work with undergraduate and graduate students, through teaching, directed reading, advising, and mentoring. The PI will also be involved in organizing conferences and seminars.This project will develop and expand general techniques to determine when certain classifying invariants are possible for a given classification problem. The analysis of classifying invariants will be facilitated by various techniques coming from axiomatic set theory, including symmetric models of set theory and cardinal characteristics of the continuum. Specifically, the PI will further develop the relationship between symmetric models of set theory, in which the axiom of choice fails, and Borel equivalence relations which are "classifiable by countable structures". This relationship will be applied to settle several problems about such equivalence relations and to further analyze their structure up to Borel reductions and Borel homomorphisms. Furthermore, generalized frameworks of classifying invariants, beyond "classification by countable structures", will be studied. These allow for a meaningful investigation of the possible classifying invariants for classification problems which were previously considered unclassifiable.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数学的一个共同主线是根据某种等价概念对对象集合进行分类的问题。这些对象的成功分类将是一个简单的属性列表,这些属性易于观察,因此具有相同属性的两个对象实际上是等效的。该项目的中心目标是进一步发展“Borel 等价关系”理论。该研究领域提供了严格的框架来分析数学中各种分类问题的复杂性并确定何时可以成功分类。该项目将扩展理论,开发新方法,并将其应用于研究数学中的各种分类问题。 PI 将通过教学、定向阅读、建议和指导与本科生和研究生合作。 PI 还将参与组织会议和研讨会。该项目将开发和扩展通用技术,以确定某些分类不变量何时适用于给定的分类问题。来自公理集合论的各种技术将有助于分类不变量的分析,包括集合论的对称模型和连续统的基本特征。具体来说,PI 将进一步发展集合论的对称模型(其中选择公理失败)与“可通过可数结构分类”的 Borel 等价关系之间的关系。该关系将用于解决有关此类等价关系的几个问题,并进一步分析其结构直至 Borel 约简和 Borel 同态。此外,还将研究“按可数结构分类”之外的分类不变量的广义框架。这些允许对以前被认为不可分类的分类问题的可能的分类不变量进行有意义的调查。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Woodin其他文献
William Woodin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Woodin', 18)}}的其他基金
Mathematical Sciences: Set Theory: Presidential Young Investigator Award
数学科学:集合论:总统青年研究员奖
- 批准号:
8917428 - 财政年份:1989
- 资助金额:
$ 16.31万 - 项目类别:
Continuing Grant
相似国自然基金
偏微分方程的稳定性与绝热不变量
- 批准号:12371241
- 批准年份:2023
- 资助金额:44 万元
- 项目类别:面上项目
L^2-不变量的逼近问题
- 批准号:12371054
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
代数簇纤维化的不变量与庞加莱问题
- 批准号:12331001
- 批准年份:2023
- 资助金额:193 万元
- 项目类别:重点项目
Cowen-Douglas算子组的相似不变量
- 批准号:12371129
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
纽结理论中的若干不变量
- 批准号:12371065
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
Structure vs Invariants in Proofs (StrIP)
证明中的结构与不变量 (StrIP)
- 批准号:
MR/Y011716/1 - 财政年份:2024
- 资助金额:
$ 16.31万 - 项目类别:
Fellowship
CAREER: Gauge-theoretic Floer invariants, C* algebras, and applications of analysis to topology
职业:规范理论 Floer 不变量、C* 代数以及拓扑分析应用
- 批准号:
2340465 - 财政年份:2024
- 资助金额:
$ 16.31万 - 项目类别:
Continuing Grant
Motivic invariants and birational geometry of simple normal crossing degenerations
简单正态交叉退化的动机不变量和双有理几何
- 批准号:
EP/Z000955/1 - 财政年份:2024
- 资助金额:
$ 16.31万 - 项目类别:
Research Grant
Conference: Tensor Invariants in Geometry and Complexity Theory
会议:几何和复杂性理论中的张量不变量
- 批准号:
2344680 - 财政年份:2024
- 资助金额:
$ 16.31万 - 项目类别:
Standard Grant
Rational GAGA and Applications to Field Invariants
Rational GAGA 及其在场不变量中的应用
- 批准号:
2402367 - 财政年份:2024
- 资助金额:
$ 16.31万 - 项目类别:
Continuing Grant