Collaborative Research: Linking microplastic decomposition rates in soils to their microbe-mineral associations using carbon stable isotopes and microspectroscopy

合作研究:利用碳稳定同位素和显微光谱学将土壤中的微塑料分解率与其微生物矿物关联联系起来

基本信息

项目摘要

Plastics use has skyrocketed globally since the mid-1950s due to a combination of their utility and low price. A large fraction is for single-use applications. Consequently, more than 25 million metric tons of plastic are annually discarded into terrestrial environments. Bio-based plastics produced from readily renewable carbon sources (i.e., corn) are increasingly being used as substitutes for legacy plastics sourced from fossil fuels. Bio-based plastics are advantageous because their carbon is converted from atmospheric CO2 instead of petroleum. Furthermore, some of these plastics are designed to biodegrade in bioactive environments. All plastics are broken down in the environment by chemical and physical processes into smaller microplastics (less than 5 mm in size) that may become accessible to microorganisms and utilized for their life function or survival. The fate of microplastic residues depends on their degradation in the environment. This research tracks the degradation of microplastic particles of polylactic acid (PLA, a bio-based plastic) and polyethylene terephthalate (PET, a petroleum-based plastic) in soils, where their slow decomposition can lead to plastic accumulation. The research exploits unique carbon isotopic ‘tags’ naturally inherent or artificially introduced to plastics to quantify decomposition with imaging and microbial community analysis to identify how degradation is occurring. The main goal of the work is to monitor the transferal of the isotopic tags to microbial biomass, and eventually, the carbon dioxide and/or methane gas microbes produce or “exhale”. The research is important because it will expand society’s limited understanding of how plastics impact soil health and function, and natural earth processes (i.e., carbon cycling) given plastics’ potential to alter the natural emission of climate warming gases like carbon dioxide and methane in soil systems. Bringing the science of microplastics to a diverse community is a priority of the research team. The project involves and supports secondary, undergraduate, and graduate level students that will be co-mentored by a multidisciplinary faculty team. Students will be involved in research objectives and trained in communicating science to the public. Importantly, students will gain experience across three increasingly related fields for solving the plastic pollution crisis: geochemistry, analytical chemistry, and polymer/green chemistry.Microplastic decomposition occurs through synergistic abiotic weathering of the plastic and key enzymatic and/or microbial interactions. Due to their acclimation to anthropogenic waste, it is hypothesized that the soil microbiome will assimilate and mineralize microplastics, and that natural soil processes like physical mixing and chemical hydrolysis will promote the integration of soil plastics within aggregates and affect the overall assimilation and mineralization of soil organic carbon and plastics by the soil microbiome. The hypotheses will be tested in controlled soil microcosms by utilizing naturally abundant and isotopically labeled (synthesized) polymers that are experimentally degraded and exposed to soils and their native microbiome. Isotopic labels offer an approach to identify assimilation and/or mineralization since they will separate these and other competing processes and/or those that may be impractical to measure in a short period. The incorporation of the plastics’ isotope label will be monitored via phospholipid fatty acid biomarkers and final mineralization gases (i.e., carbon dioxide and methane) using isotope ratio mass spectrometry. Spectroscopy based approaches (i.e., synchrotron-based scanning transmission X-ray microscopy and near-edge X-ray absorption fine-structure spectroscopy) will account for the plastics’ reactivity and association with soil aggregates. The combination of stable isotopic, spectral, and isotopic mass balance approaches will establish a fundamental understanding of plastic decomposition, and include a modeling of their assimilation and mineralization, transformation to lower weight products, and final conversion to carbon dioxide and methane in soils. This research will further basic science understanding of physical, chemical, and biological processes in soils and address a topic of great current practical interest in environmental geochemistry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
自 20 世纪 50 年代中期以来,由于其实用性和价格低廉,塑料的使用量急剧增加,每年有超过 2500 万吨塑料被丢弃到陆地环境中。由易于再生的碳源(即玉米)生产的塑料越来越多地用作源自化石燃料的传统塑料的替代品生物基塑料具有优势,因为它们的碳是从大气中转化而来的。此外,其中一些塑料可在生物活性环境中生物降解,所有塑料都会在环境中通过化学和物理过程分解成更小的微塑料(尺寸小于 5 毫米),这些微塑料可能会被微生物和微生物所接触。微塑料残留物的命运取决于它们在环境中的降解。这项研究追踪了聚乳酸(PLA,一种生物基塑料)和聚乙烯微塑料颗粒的降解情况。土壤中的对苯二甲酸酯(PET,一种石油基塑料),其缓慢分解会导致塑料积累。该研究利用塑料中天然固有或人工引入的独特碳同位素“标签”,通过成像和微生物群落分析来量化分解情况,以识别塑料。这项工作的主要目标是监测同位素标签向微生物生物质的转移,以及最终向二氧化碳和/或甲烷气体的转移。这项研究很重要,因为鉴于塑料有改变气候变暖气体自然排放的潜力,它将扩大社会对塑料如何影响土壤健康和功能以及自然地球过程(即碳循环)的有限了解。将微塑料科学引入多元化社区是该项目的首要任务,该项目涉及并支持由多学科学生共同指导的中学生、本科生和研究生。学生将参与研究目标并接受向公众传播科学的培训,重要的是,学生将在解决塑料污染危机的三个日益相关的领域获得经验:地球化学、分析化学和聚合物/绿色化学。微塑料分解。通过塑料的协同非生物风化以及关键的酶和/或微生物相互作用而发生,由于它们对人为废物的适应,土壤微生物组将吸收和矿化微塑料,并且物理混合和化学水解等自然土壤过程将促进土壤塑料在团聚体中的整合,并影响土壤微生物组对土壤有机碳和塑料的整体同化和矿化。这些假设将通过自然利用丰富的土壤微观世界进行检验。通过实验降解并暴露于土壤及其天然微生物组的同位素标记(合成)聚合物提供了一种识别同化和/或矿化的方法,因为它们会分离。这些和其他竞争过程和/或那些可能无法在短时间内测量的过程将通过磷脂脂肪酸生物标记物和使用同位素的最终矿化气体(即二氧化碳和甲烷)来监测塑料同位素标记的掺入。基于光谱的方法(即基于同步加速器的扫描透射 X 射线显微镜和近边缘 X 射线吸收精细结构光谱)将解释塑料的反应性以及与土壤团聚体的关联,稳定同位素、光谱和同位素质量平衡方法的结合将建立对塑料分解的基本理解,并包括其同化和矿化以及向较低重量产品的转化的建模。 ,以及最终在土壤中转化为二氧化碳和甲烷。这项研究将进一步加深对土壤中物理、化学和生物过程的基础科学理解,并解决当前环境地球化学中具有重大实际意义的主题。通过使用基金会的智力价值和更广泛的影响审查标准进行评估,NSF 的法定使命被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brian Giebel其他文献

Brian Giebel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

潮间带梯度上红树植物-大型底栖动物功能性状多样性链接关系研究
  • 批准号:
    32360276
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
链接小分子受体的设计合成与光伏性能研究
  • 批准号:
    52373168
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
面向多源异构数据的实体链接技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
核小体泛素链接酶Bre1的结构和功能研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
基于多维关联网络表征的导学链接预测方法研究
  • 批准号:
    62272392
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Linking microbial social interactions within soil aggregate communities to ecosystem C, N, and P cycling
合作研究:将土壤团聚群落内的微生物社会相互作用与生态系统 C、N 和 P 循环联系起来
  • 批准号:
    2346372
  • 财政年份:
    2024
  • 资助金额:
    $ 45.17万
  • 项目类别:
    Standard Grant
Collaborative Research: Linking carbon preferences and competition to predict and test patterns of functional diversity in soil microbial communities
合作研究:将碳偏好和竞争联系起来,预测和测试土壤微生物群落功能多样性的模式
  • 批准号:
    2312302
  • 财政年份:
    2024
  • 资助金额:
    $ 45.17万
  • 项目类别:
    Standard Grant
Collaborative Research: Linking microbial social interactions within soil aggregate communities to ecosystem C, N, and P cycling
合作研究:将土壤团聚群落内的微生物社会相互作用与生态系统 C、N 和 P 循环联系起来
  • 批准号:
    2346371
  • 财政年份:
    2024
  • 资助金额:
    $ 45.17万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: Linking geochemical proxy records to crustal stratigraphic context via community-interactive cyberinfrastructure
合作研究:要素:通过社区交互式网络基础设施将地球化学代理记录与地壳地层背景联系起来
  • 批准号:
    2311092
  • 财政年份:
    2023
  • 资助金额:
    $ 45.17万
  • 项目类别:
    Standard Grant
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
  • 批准号:
    2318829
  • 财政年份:
    2023
  • 资助金额:
    $ 45.17万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了