CDS&E: Multiscale Process Intensification of Direct Catalytic Hydrogenation of CO2 to Hydrocarbons via Cooperative Tandem Catalysis

CDS

基本信息

项目摘要

Significant research efforts are currently underway to develop new chemical manufacturing technologies that have the potential to decarbonize the energy and chemical industries, maintaining the prominent role of the U.S. in producing valuable chemical products and transportation fuels. Key to this continuing advance is the development of “intensified” chemical processes that combine what traditionally were multiple processing steps into a single, multifunctional operation, facilitating energy savings and cost reductions - process improvements that have broad applicability to energy, chemicals, and other manufacturing sectors. The catalyst and process design methods proposed in this research program also facilitate the development of modular manufacturing processes, increasing the efficiency, flexibility, resilience, and overall competitiveness of chemical manufacturing supply chains. With the recent revolution in domestic shale gas production, new routes to using novel catalytic systems that effectively promote a sequence of reactions (rather than a single reaction) will open the door to potentially disruptive process intensification technologies for shale gas conversion and new pathways to creating a hydrogen-based economy. This research program will support the recruitment of traditionally underrepresented students both at the graduate and undergraduate levels. An outreach activity is planned that will teach the importance of sustainable design to 1st–4th graders. The research findings will be integrated into a new graduate-level course.This project will establish the foundation of a new direction in process intensification through the development of cooperative tandem catalysts, catalysts that promote sequences of chemical reactions rather than a single reaction. Specifically, this research will address the following fundamental questions: How do multiple catalysts interact and affect individual catalytic performances in a tandem reactive process at the micro-, meso- and macro/process-scales? When is tandem catalysis desirable? How can the optimal combinations of tandem catalysts be predicted? How are multi-catalytic systems designed, synthesized, and tuned to perform a series of reactions while ensuring the desired product quality, stability, and performance at the process level? As a representative tandem catalytic system, hydrogenation of CO2 over metal oxides to produce methanol will be integrated with zeolite frameworks that selectively transform methanol to C2+ chemical products, specifically C2-C4 olefins and C5-C18 hydrocarbons. Chemical transformation of CO2 with H2 into fuels, chemicals, or chemical precursors constitutes a conceptual evolution in achieving sustainable chemical production and expediting the “green energy” transition. To better understand the interactions among reaction chemical species and the tandem catalysis, the research team plans to develop, validate, and analyze mechanistic models at the density functional theory (DFT) level and translate the results of the DFT simulations into the rate and equilibrium constants of microkinetic models. To elucidate how microscopic changes affect the macroscopic properties of a tandem catalyst system, a unique method based on order parameter analysis (originally developed in the context of studying phase transitions) will be formulated to reduce the complexity of the multi-scale reactor models. Understanding how the properties of catalysts influence the merging of reaction processes will facilitate the design and control of intensified processes, thereby saving significant time and investment for new chemical product discovery.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
目前正在大力研究开发新的化学制造技术,这些技术有可能使能源和化学工业脱碳,从而保持美国在生产有价值的化学产品和运输燃料方面的突出地位。这一持续进步的关键是“发展”。强化”化学工艺,将传统上的多个加工步骤结合到一个单一的多功能操作中,促进节能和降低成本——工艺改进,广泛适用于能源、化学品和其他制造领域。这个研究计划还促进模块化制造工艺的发展,提高化学制造供应链的效率、灵活性、弹性和整体竞争力。随着近期国内页岩气生产的革命,使用有效促进一系列反应的新型催化系统的新途径。 (而不是单一反应)将为页岩气转化的潜在颠覆性过程强化技术和创建氢经济的新途径打开大门。该研究计划将支持招收传统上代表性不足的研究生和本科生。一次外展活动计划向一年级至四年级的学生讲授可持续设计的重要性。研究结果将纳入新的研究生课程。该项目将通过开发合作串联催化剂为过程强化的新方向奠定基础。具体来说,这项研究将影响以下基本问题:在微观、介观和微观的串联反应过程中,多种催化剂如何相互作用以及各自的催化性能。宏观/工艺规模?何时需要串联催化?如何预测串联催化剂的最佳组合?如何设计、合成和调整以执行一系列反应,同时确保所需的产品质量、稳定性、作为代表性的串联催化系统,CO2 在金属氧化物上加氢生产甲醇将与沸石框架相结合,选择性地将甲醇转化为 C2+ 化学产品,特别是C2-C4 烯烃和 C5-C18 碳氢化合物将 CO2 与 H2 化学转化为燃料、化学品或化学前体,构成了实现可持续化学生产和加速“绿色能源”转型的概念演变,以更好地了解化学反应之间的相互作用。研究小组计划在密度泛函理论(DFT)水平上开发、验证和分析机理模型,并将DFT模拟的结果转化为速率和平衡为了阐明微观变化如何影响串联催化剂体系的宏观性质,将制定一种基于有序参数分析(最初是在研究相变的背景下开发的)的独特方法,以降低多因素的复杂性。了解催化剂的性质如何影响反应过程的合并将有助于强化过程的设计和控制,从而为新化学产品的发现节省大量时间和投资。该奖项的法定使命是值得通过使用基金会的智力优点和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MM Faruque Hasan其他文献

MM Faruque Hasan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MM Faruque Hasan', 18)}}的其他基金

CAREER: Synergistic Design, Analysis and Learning of Intensified Process Systems
职业:强化过程系统的协同设计、分析和学习
  • 批准号:
    1943479
  • 财政年份:
    2020
  • 资助金额:
    $ 47.44万
  • 项目类别:
    Continuing Grant
Systematic Process Intensification of Gas Separation, Conversion, and Storage
气体分离、转化和储存的系统化过程强化
  • 批准号:
    1606027
  • 财政年份:
    2016
  • 资助金额:
    $ 47.44万
  • 项目类别:
    Standard Grant

相似国自然基金

江苏典型乡村转型发展的动态过程与驱动机理研究:融合多尺度治理的新内生发展视角
  • 批准号:
    42371205
  • 批准年份:
    2023
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目
基于多卫星联合观测的磁层顶磁重联多尺度过程研究
  • 批准号:
    42304180
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
新型变径流化床油转化催化反应过程多尺度耦合建模与多模态鲁棒优化
  • 批准号:
    62373155
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
多尺度多孔介质多场耦合反应输运过程的拓扑优化模型、方法及机理
  • 批准号:
    52376074
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
行动者网络视角下非遗经济化的多尺度空间过程与机制
  • 批准号:
    42371248
  • 批准年份:
    2023
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目

相似海外基金

Radiation Oncology at the Interface of Pediatric Cancer Biology and Data Science
儿科癌症生物学和数据科学交叉领域的放射肿瘤学
  • 批准号:
    10712290
  • 财政年份:
    2023
  • 资助金额:
    $ 47.44万
  • 项目类别:
Systems Biology of Tumor-Immune-Stromal Interactions in Metastatic Progression
转移进展中肿瘤-免疫-基质相互作用的系统生物学
  • 批准号:
    10729464
  • 财政年份:
    2023
  • 资助金额:
    $ 47.44万
  • 项目类别:
Mathematical Optimization of Surveillance Ages to Intercept colitis-associated Colorectal cancer (MOSAIC)
监测年龄的数学优化以拦截结肠炎​​相关结直肠癌 (MOSAIC)
  • 批准号:
    10581069
  • 财政年份:
    2023
  • 资助金额:
    $ 47.44万
  • 项目类别:
Multiscale modeling of spatiotemporal evolution in Barrett's esophagus
巴雷特食管时空演化的多尺度建模
  • 批准号:
    10659649
  • 财政年份:
    2023
  • 资助金额:
    $ 47.44万
  • 项目类别:
High-throughput Phenotyping of iPSC-derived Airway Epithelium by Multiscale Machine Learning Microscopy
通过多尺度机器学习显微镜对 iPSC 衍生的气道上皮进行高通量表型分析
  • 批准号:
    10659397
  • 财政年份:
    2023
  • 资助金额:
    $ 47.44万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了