CDS&E: Multiscale Process Intensification of Direct Catalytic Hydrogenation of CO2 to Hydrocarbons via Cooperative Tandem Catalysis

CDS

基本信息

项目摘要

Significant research efforts are currently underway to develop new chemical manufacturing technologies that have the potential to decarbonize the energy and chemical industries, maintaining the prominent role of the U.S. in producing valuable chemical products and transportation fuels. Key to this continuing advance is the development of “intensified” chemical processes that combine what traditionally were multiple processing steps into a single, multifunctional operation, facilitating energy savings and cost reductions - process improvements that have broad applicability to energy, chemicals, and other manufacturing sectors. The catalyst and process design methods proposed in this research program also facilitate the development of modular manufacturing processes, increasing the efficiency, flexibility, resilience, and overall competitiveness of chemical manufacturing supply chains. With the recent revolution in domestic shale gas production, new routes to using novel catalytic systems that effectively promote a sequence of reactions (rather than a single reaction) will open the door to potentially disruptive process intensification technologies for shale gas conversion and new pathways to creating a hydrogen-based economy. This research program will support the recruitment of traditionally underrepresented students both at the graduate and undergraduate levels. An outreach activity is planned that will teach the importance of sustainable design to 1st–4th graders. The research findings will be integrated into a new graduate-level course.This project will establish the foundation of a new direction in process intensification through the development of cooperative tandem catalysts, catalysts that promote sequences of chemical reactions rather than a single reaction. Specifically, this research will address the following fundamental questions: How do multiple catalysts interact and affect individual catalytic performances in a tandem reactive process at the micro-, meso- and macro/process-scales? When is tandem catalysis desirable? How can the optimal combinations of tandem catalysts be predicted? How are multi-catalytic systems designed, synthesized, and tuned to perform a series of reactions while ensuring the desired product quality, stability, and performance at the process level? As a representative tandem catalytic system, hydrogenation of CO2 over metal oxides to produce methanol will be integrated with zeolite frameworks that selectively transform methanol to C2+ chemical products, specifically C2-C4 olefins and C5-C18 hydrocarbons. Chemical transformation of CO2 with H2 into fuels, chemicals, or chemical precursors constitutes a conceptual evolution in achieving sustainable chemical production and expediting the “green energy” transition. To better understand the interactions among reaction chemical species and the tandem catalysis, the research team plans to develop, validate, and analyze mechanistic models at the density functional theory (DFT) level and translate the results of the DFT simulations into the rate and equilibrium constants of microkinetic models. To elucidate how microscopic changes affect the macroscopic properties of a tandem catalyst system, a unique method based on order parameter analysis (originally developed in the context of studying phase transitions) will be formulated to reduce the complexity of the multi-scale reactor models. Understanding how the properties of catalysts influence the merging of reaction processes will facilitate the design and control of intensified processes, thereby saving significant time and investment for new chemical product discovery.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
目前正在进行重大的研究工作,以开发新的化学制造技术,这些技术有可能使能源和化学工业脱碳,并保持美国在生产有价值的化学产品和运输燃料中的重要作用。这一持续进步的关键是开发“加强”的化学过程,这些化学过程将传统上多个处理步骤结合到一个多功能操作,支持节能和降低成本 - 对能源,化学品和其他制造业具有广泛适用性的过程改进。本研究计划中提出的催化剂和过程设计方法还促进了模块化制造过程的发展,从而提高了化学制造供应链的效率,灵活性,弹性和整体竞争力。随着国内页岩气生产的最新革命,使用有效促进一系列反应(而不是单一反应)的新型催化系统的新途径将为潜在的破坏性工艺强化技术打开,以进行页岩气转换和创造基于氢的经济的新途径。该研究计划将支持在研究生和本科级别招募传统上代表性不足的学生。计划进行外展活动,该活动将教授可持续设计的重要性,这是一年级至4年级学生的重要性。研究结果将融入一个新的研究生级课程中。该项目将通过开发合作串联催化剂,促进化学反应序列而不是单一反应的催化剂来建立新的过程加强方向的基础。具体而言,这项研究将解决以下基本问题:在微型,中,中和宏观/过程刻度下,多种催化剂如何相互作用并影响单个催化性能?何时需要串联催化?如何预测串联催化剂的最佳组合?如何设计,合成和调整多催化系统以执行一系列反应,同时确保在过程级别上所需的产品质量,稳定性和性能?作为代表性的串联催化系统,将CO2在金属氧化物上产生甲醇的氢化将与沸石框架集成,这些沸石框架有选择地将甲醇转化为C2+化学产物,特别是C2-C4烯醇和C5-C18烃。用H2向燃料,化学物质或化学前体的化学转化构成了实现可持续化学生产并加快“绿色能量”过渡的概念发展。为了更好地了解反应化学物种与串联催化之间的相互作用,研究小组计划以密度功能理论(DFT)水平开发,验证和分析机械模型,并将DFT模拟的结果转化为微动力学模型的速率和平衡常数。为了阐明微观变化如何影响串联催化剂系统的宏观特性,将制定一种基于顺序参数分析(最初在研究相变的背景下开发的)的独特方法,以降低多规模反应堆模型的复杂性。了解催化剂的特性如何影响反应过程的合并将有助于设计和控制受启发的过程,从而节省了新的化学产品发现的大量时间和投资。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子优点和更广泛的影响审查标准来评估的珍贵的支​​持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MM Faruque Hasan其他文献

Systematic incorporation of inherent safety in hazardous chemicals supply chain optimization
  • DOI:
    10.1016/j.jlp.2020.104262
  • 发表时间:
    2020-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Nitin Roy;M. Sam Mannan;MM Faruque Hasan
  • 通讯作者:
    MM Faruque Hasan

MM Faruque Hasan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MM Faruque Hasan', 18)}}的其他基金

CAREER: Synergistic Design, Analysis and Learning of Intensified Process Systems
职业:强化过程系统的协同设计、分析和学习
  • 批准号:
    1943479
  • 财政年份:
    2020
  • 资助金额:
    $ 47.44万
  • 项目类别:
    Continuing Grant
Systematic Process Intensification of Gas Separation, Conversion, and Storage
气体分离、转化和储存的系统化过程强化
  • 批准号:
    1606027
  • 财政年份:
    2016
  • 资助金额:
    $ 47.44万
  • 项目类别:
    Standard Grant

相似国自然基金

新型变径流化床油转化催化反应过程多尺度耦合建模与多模态鲁棒优化
  • 批准号:
    62373155
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
台湾河流水沙过程对台风事件的多尺度响应
  • 批准号:
    42306098
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
行动者网络视角下非遗经济化的多尺度空间过程与机制
  • 批准号:
    42371248
  • 批准年份:
    2023
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目
喀斯特森林木本植物多样性格局的多空间尺度驱动过程
  • 批准号:
    32360273
  • 批准年份:
    2023
  • 资助金额:
    32.00 万元
  • 项目类别:
    地区科学基金项目
江苏典型乡村转型发展的动态过程与驱动机理研究:融合多尺度治理的新内生发展视角
  • 批准号:
    42371205
  • 批准年份:
    2023
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目

相似海外基金

Radiation Oncology at the Interface of Pediatric Cancer Biology and Data Science
儿科癌症生物学和数据科学交叉领域的放射肿瘤学
  • 批准号:
    10712290
  • 财政年份:
    2023
  • 资助金额:
    $ 47.44万
  • 项目类别:
Systems Biology of Tumor-Immune-Stromal Interactions in Metastatic Progression
转移进展中肿瘤-免疫-基质相互作用的系统生物学
  • 批准号:
    10729464
  • 财政年份:
    2023
  • 资助金额:
    $ 47.44万
  • 项目类别:
Mathematical Optimization of Surveillance Ages to Intercept colitis-associated Colorectal cancer (MOSAIC)
监测年龄的数学优化以拦截结肠炎​​相关结直肠癌 (MOSAIC)
  • 批准号:
    10581069
  • 财政年份:
    2023
  • 资助金额:
    $ 47.44万
  • 项目类别:
Multiscale modeling of spatiotemporal evolution in Barrett's esophagus
巴雷特食管时空演化的多尺度建模
  • 批准号:
    10659649
  • 财政年份:
    2023
  • 资助金额:
    $ 47.44万
  • 项目类别:
High-throughput Phenotyping of iPSC-derived Airway Epithelium by Multiscale Machine Learning Microscopy
通过多尺度机器学习显微镜对 iPSC 衍生的气道上皮进行高通量表型分析
  • 批准号:
    10659397
  • 财政年份:
    2023
  • 资助金额:
    $ 47.44万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了