CDS&E: Multiscale Computational Modeling of Flow-Induced Mechanical Deformation via Nonlocal Formulations

CDS

基本信息

  • 批准号:
    2245343
  • 负责人:
  • 金额:
    $ 38.66万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-01 至 2026-05-31
  • 项目状态:
    未结题

项目摘要

This Computational and Data-Enabled Science and Engineering (CDS&E) project will contribute to the advancement of national prosperity and economic welfare by enabling predictive simulations of complex mechanical problems with relevance to biomedicine (how to adhere layers of tissue together after surgery) and the development of coatings and sealants (how to ensure dried paint remains attached to a surface). Most have experienced the commonplace challenge of peeling off a piece of tape from a surface or attempting to lift a thin object stuck to a wet glass tabletop. From paint and do-it-yourself home repair to diapers and hygiene products, soft coatings involve the fluid-layer-mediated adhesion of an elastic material to a rigid substrate. The ability to accurately simulate the adhesion and debonding processes, including material failure, in real-world scenarios remains a challenge. The fundamental research supported by this grant will promote the progress of science by developing theories that will lead to fast and accurate simulation tools capable of handling the complex interaction between thin layers of fluids and soft, elastic surfaces that can adhere, detach, or even tear apart due to the flow of the fluid. Undergraduate and graduate students will be trained in computational mechanics, and planned interactions with an HBCU will increase the diversity of individuals pursuing higher degrees, and ultimately of the STEM workforce.This grant will enable predictive, multiscale simulation of flow-induced mechanical deformation using nonlocal formulations of continuum mechanics via the construction of tractable 1D models coupling nonlocal mechanical response to fluid flow, leading to creation of 3D solvers for peridynamic equations, employing novel finite-volume discretizations that permit the simulation of two-way coupled fluid-structure interactions featuring nonlocal mechanics. Using recent developments in mathematical analysis, such as weakly-singular kernels for defining nonlocal generalization of the Laplacian, nonlocal 1D models will be derived to understand the fundamentals of flow-driven delamination of nanosheets where classical continuum mechanics approaches fail. Ideas from the finite-volume implementation of meshless (particle) methods will be used to design and build 3D computational tools upon standardized, open-source frameworks that can be made freely available to researchers and practitioners. The resulting computational tools will be capable of bridging scales (from the mesoscale to the continuum scale via nonlocal theories) to enable predictive simulation of flow coupled to nonlocal mechanics relevant to applications such as soft adhesion, additive manufacturing and biophysics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该计算和数据支持的科学与工程(CDS&E)项目将通过对复杂的机械问题以及与生物医学相关的相关性(手术后如何将组织层一起粘附在一起)和涂料和密封剂(确保涂料的开发(如何确保涂料)(如何将干燥的涂料都附着在表面上),从而有助于进步国家繁荣和经济福利。大多数人经历了从表面上剥离一块胶带或试图将薄薄的物体绑在湿玻璃桌上的司法挑战。从油漆和自己动手的家用修理到尿布和卫生产品,软涂层涉及弹性材料对刚性基材的液体介导的粘附。在实际情况下,准确模拟粘附和脱键过程(包括材料故障)的能力仍然是一个挑战。该赠款支持的基本研究将通过开发理论来促进科学的进步,这些理论将导致能够处理流体薄层和柔软的弹性表面之间的复杂相互作用,这些工​​具可以粘附,柔软的弹性表面,这些弹性表面可以粘附,分离,甚至由于流体流动而撕裂。 Undergraduate and graduate students will be trained in computational mechanics, and planned interactions with an HBCU will increase the diversity of individuals pursuing higher degrees, and ultimately of the STEM workforce.This grant will enable predictive, multiscale simulation of flow-induced mechanical deformation using nonlocal formulations of continuum mechanics via the construction of tractable 1D models coupling nonlocal mechanical response to fluid flow, leading to使用新颖的有限体积离散化创建3D求解器,用于peridynamic方程,允许模拟具有非局部力学的双向耦合流体结构相互作用。利用数学分析中的最新发展,例如定义拉普拉斯(Laplacian)非局部概括的弱层内核,将得出非局部1D模型,以了解纳米片流动驱动分层的基本面,在这些基础上,经典的连续机械方法失败了。来自无网状(粒子)方法的有限体积实施的想法将用于在标准化的,开源的框架上设计和构建3D计算工具,这些框架可以免费提供给研究人员和从业者。 The resulting computational tools will be capable of bridging scales (from the mesoscale to the continuum scale via nonlocal theories) to enable predictive simulation of flow coupled to nonlocal mechanics relevant to applications such as soft adhesion, additive manufacturing and biophysics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review 标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Ivan Christov的其他基金

Nonlinear Dynamics of Confined Interfaces: Beyond Linear Analysis and Towards Control
受限界面的非线性动力学:超越线性分析并走向控制
  • 批准号:
    2029540
    2029540
  • 财政年份:
    2020
  • 资助金额:
    $ 38.66万
    $ 38.66万
  • 项目类别:
    Standard Grant
    Standard Grant
Microscale Fluid--Structure Interactions: Towards a Predictive Theory of Their Dynamic Response
微尺度流体-结构相互作用:动态响应的预测理论
  • 批准号:
    1705637
    1705637
  • 财政年份:
    2017
  • 资助金额:
    $ 38.66万
    $ 38.66万
  • 项目类别:
    Standard Grant
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    1104047
    1104047
  • 财政年份:
    2011
  • 资助金额:
    $ 38.66万
    $ 38.66万
  • 项目类别:
    Fellowship Award
    Fellowship Award

相似国自然基金

陶瓷-金属功能梯度复合材料层裂与微层裂行为的多尺度建模与计算研究
  • 批准号:
    12372355
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
刚柔耦合多体系统接触/碰撞/摩擦多尺度动力学快速仿真计算方法
  • 批准号:
    12302042
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于事件相机的地理视频多尺度时空表达与多模态认知计算
  • 批准号:
    42371433
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
不相容微结构的多尺度建模与计算方法研究
  • 批准号:
    12371438
  • 批准年份:
    2023
  • 资助金额:
    44.00 万元
  • 项目类别:
    面上项目
半导体器件中缺陷相关可靠性物理的多尺度计算模拟
  • 批准号:
    12334005
  • 批准年份:
    2023
  • 资助金额:
    239.00 万元
  • 项目类别:
    重点项目

相似海外基金

CAREER: Computational Design of Fluorescent Proteins with Multiscale Excited State QM/MM Methods
职业:利用多尺度激发态 QM/MM 方法进行荧光蛋白的计算设计
  • 批准号:
    2338804
    2338804
  • 财政年份:
    2024
  • 资助金额:
    $ 38.66万
    $ 38.66万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
  • 批准号:
    10462257
    10462257
  • 财政年份:
    2023
  • 资助金额:
    $ 38.66万
    $ 38.66万
  • 项目类别:
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
  • 批准号:
    2148678
    2148678
  • 财政年份:
    2023
  • 资助金额:
    $ 38.66万
    $ 38.66万
  • 项目类别:
    Standard Grant
    Standard Grant
Integrated Multiscale Computational and Experimental Investigations on Fracture of Additively Manufactured Polymer Composites
增材制造聚合物复合材料断裂的综合多尺度计算和实验研究
  • 批准号:
    2309845
    2309845
  • 财政年份:
    2023
  • 资助金额:
    $ 38.66万
    $ 38.66万
  • 项目类别:
    Standard Grant
    Standard Grant
Multiscale Computational Microscopy of HIV-1
HIV-1 的多尺度计算显微镜
  • 批准号:
    10756808
    10756808
  • 财政年份:
    2023
  • 资助金额:
    $ 38.66万
    $ 38.66万
  • 项目类别: