Collaborative Research: SaTC: EDU: Fire and ICE: Raising Security Awareness through Experiential Learning Activities for Building Trustworthy Deep Learning-based Applications
协作研究:SaTC:EDU:火灾和 ICE:通过体验式学习活动提高安全意识,构建值得信赖的基于深度学习的应用程序
基本信息
- 批准号:2244221
- 负责人:
- 金额:$ 4.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In privacy-sensitive and safety-critical applications, deep learning models are increasingly accepted and utilized. This trend is bound to continue: many open-source frameworks and tools from online code repositories are embedded with deep learning modules. However, many deep learning models contain hidden weaknesses that could be exploited by attacks, posing significant risks to user privacy and safety. It is essential, therefore, to raise security awareness among college students, who are the future data engineering practitioners, and equip them with knowledge and strategies for designing trustworthy, deep learning based applications. This project responds to the urgent need in three critical areas: integrity, confidentiality and equity (ICE). A series of easy-to-implement experiential learning activities concretize learners’ awareness of potential vulnerabilities in deep learning models and enhance their ability to build secure applications of their own. These activities are expressly designed for learners with little prior knowledge, and are streamlined to reduce preparation time and cost for the instructor. The activities’ flexibility maximizes the equitable dissemination of relevant knowledge that is critical to society. The investigators are especially mindful of the needs of minority and socio-economically disadvantaged student populations.A total of twelve learning activity sets address a wide array of issues arising in ICE areas. For data integrity, threats posed by adversarial examples, data poisoning, and backdoor hidden features are tackled. The emphasis on experiential learning allows learners to become acquainted with the process and effects of attacks before learners are equipped with strategies and trained to implement proper defense. To enhance confidentiality, learners first encounter at least two potential sources of privacy leakage, dataset overfitting and abusive querying, and are then taught preventative countermeasures. Both sample biases and algorithmic biases in deep learning models are addressed in the learning activities. Artificial intelligence and deep learning constitute a fast-developing field, and educators must keep pace. The project enriches the supply of educational tools by introducing recent discoveries in the field, including those made by the investigators themselves.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在对隐私敏感的和关键的安全应用程序中,深度学习模型被越来越多地接受。因此,对用户的隐私和安全构成了重大风险,因此,提高大学生的安全意识是未来的数据工程从业人员,并为他们提供了设计基于深度学习的应用程序的知识和策略在三个关键领域的迫切需要:廉价,冰(ICE)最大化对社会至关重要的公平传播相关知识。对抗性示例,数据中毒和后门隐藏特征的态度是对实验的重点。泄漏,数据集过度拟合和滥用的查询,并在深度学习模型中教授ES和算法偏见。老虎本身。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yan Huang其他文献
Clinical significance of spasmolytic polypeptide-expressing metaplasia and intestinal metaplasia in Epstein-Barr virus-associated and Epstein-Barr virus-negative gastric cancer.
表达解痉多肽的化生和肠化生在 Epstein-Barr 病毒相关和 Epstein-Barr 病毒阴性胃癌中的临床意义。
- DOI:
10.1016/j.humpath.2017.02.016 - 发表时间:
2017 - 期刊:
- 影响因子:3.3
- 作者:
Y. Zhang;Jian;M. Dong;Zhi;Yi;Jun Wu;Hong Du;Hai‐gang Li;Yan Huang;C. Shao - 通讯作者:
C. Shao
Fluorinated triphenylamine silicon phthalocyanine nanoparticles with two-color imaging guided in vitro photodynamic therapy through lysosomal dysfunction.
具有双色成像的氟化三苯胺硅酞菁纳米颗粒通过溶酶体功能障碍引导体外光动力治疗。
- DOI:
10.1016/j.pdpdt.2023.103734 - 发表时间:
2023 - 期刊:
- 影响因子:3.3
- 作者:
Fangmei Zheng;Yan Huang;Yating Shen;Guizhi Chen;Yiru Peng;Xuemei Zhuang - 通讯作者:
Xuemei Zhuang
Regularized sequence-level deep neural network model adaptation
正则化序列级深度神经网络模型自适应
- DOI:
10.21437/interspeech.2015-286 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Yan Huang;Y. Gong - 通讯作者:
Y. Gong
A method to optimize sampling locations for measuring indoor air distributions
一种优化室内空气分布测量采样位置的方法
- DOI:
10.1016/j.atmosenv.2014.12.017 - 发表时间:
2015-02 - 期刊:
- 影响因子:5
- 作者:
Yan Huang;Xiong Shen;Jianmin Li;Bingye Li;Ran Duan;Chao-Hsin Lin;Junjie Liu;Qingyan Chen - 通讯作者:
Qingyan Chen
Influence of AOD remotely sensed products, meteorological parameters, and AOD–PM2.5 models on the PM2.5 estimation
AOD遥感产品、气象参数和AOD-PM2.5模型对PM2.5估算的影响
- DOI:
10.1007/s00477-020-01941-7 - 发表时间:
2021-01 - 期刊:
- 影响因子:4.2
- 作者:
Yuelei Xu;Yan Huang;Zhongyang Guo - 通讯作者:
Zhongyang Guo
Yan Huang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yan Huang', 18)}}的其他基金
Collaborative Research: IUSE: EDU: Innovative and Inclusive Undergraduate XR Engineering Education to Cultivate Future Metaverse Workforce
合作研究:IUSE:EDU:创新和包容的本科 XR 工程教育,培养未来的元宇宙劳动力
- 批准号:
2315595 - 财政年份:2023
- 资助金额:
$ 4.47万 - 项目类别:
Standard Grant
Convergence Accelerator Phase I (RAISE): Prepare the US labor Force for Future Jobs in the Hotel and Restaurant Industry: A hybrid Framework and Multi-Stakeholder Approach
融合加速器第一阶段 (RAISE):为美国劳动力在酒店和餐饮业的未来就业做好准备:混合框架和多利益相关者方法
- 批准号:
1937833 - 财政年份:2019
- 资助金额:
$ 4.47万 - 项目类别:
Standard Grant
High resolution, multi-material deposition of tissue engineering scaffolds
组织工程支架的高分辨率、多材料沉积
- 批准号:
EP/M018989/1 - 财政年份:2015
- 资助金额:
$ 4.47万 - 项目类别:
Research Grant
CRII: SaTC: Efficient Secure Multiparty Computation of Large-Scale, Complex Protocols
CRII:SaTC:大规模、复杂协议的高效安全多方计算
- 批准号:
1464113 - 财政年份:2015
- 资助金额:
$ 4.47万 - 项目类别:
Standard Grant
U.S.-Based Student Support to Attend ACM SIGSPATIAL 2014
支持美国学生参加 2014 年 ACM SIGSPATIAL
- 批准号:
1449024 - 财政年份:2014
- 资助金额:
$ 4.47万 - 项目类别:
Standard Grant
Continuous Twin Screw Rheo-Extrustion of Light Alloys
轻合金连续双螺杆流变挤出
- 批准号:
EP/J500793/1 - 财政年份:2011
- 资助金额:
$ 4.47万 - 项目类别:
Research Grant
III: Small: AegisDB: Integrated Real-Time Geo-Stream Processing and Monitoring System: A Data-Type-Based Approach
III:小型:AegisDB:集成实时地理流处理和监测系统:基于数据类型的方法
- 批准号:
1017926 - 财政年份:2010
- 资助金额:
$ 4.47万 - 项目类别:
Standard Grant
SGER: Detecting and Maintaining Evolving Regions from Spatially and Temporally Varying Observations for Monitoring and Alerting
SGER:从空间和时间变化的观测中检测和维护不断变化的区域以进行监控和警报
- 批准号:
0844342 - 财政年份:2008
- 资助金额:
$ 4.47万 - 项目类别:
Standard Grant
CRI: IAD Infrastructure for Environmental Monitoring and Modeling using Large-Scale Sensor Networks
CRI:使用大规模传感器网络进行环境监测和建模的 IAD 基础设施
- 批准号:
0709285 - 财政年份:2007
- 资助金额:
$ 4.47万 - 项目类别:
Continuing Grant
相似国自然基金
离子型稀土渗流-应力-化学耦合作用机理与溶浸开采优化研究
- 批准号:52364012
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
亲环蛋白调控作物与蚜虫互作分子机制的研究
- 批准号:32301770
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于金属-多酚网络衍生多相吸波体的界面调控及电磁响应机制研究
- 批准号:52302362
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
职场网络闲逛行为的作用结果及其反馈效应——基于行为者和观察者视角的整合研究
- 批准号:72302108
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
EIF6负调控Dicer活性促进EV71复制的分子机制研究
- 批准号:32300133
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330940 - 财政年份:2024
- 资助金额:
$ 4.47万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 4.47万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338301 - 财政年份:2024
- 资助金额:
$ 4.47万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317233 - 财政年份:2024
- 资助金额:
$ 4.47万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338302 - 财政年份:2024
- 资助金额:
$ 4.47万 - 项目类别:
Continuing Grant