Collaborative Research: SHF: Medium: Automated energy-efficient sensor data winnowing using native analog processing
协作研究:SHF:中:使用本机模拟处理进行自动节能传感器数据筛选
基本信息
- 批准号:2212346
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
As computing becomes pervasive in all aspects of daily life, computing hardware must allow for increasing interaction with the physical world. This interaction takes the form of sensed signals that are analog in nature, e.g., a sensor may output a voltage that can take on a continuous range of values. Traditional mainstream computing digitizes this data, converting it to digital 0s and 1s for efficient analysis and processing. However, as the amount of sensed analog data is growing exponentially, digital processors will be faced with a data deluge from external sensors. For these vast volumes of data, even the cost of converting analog input data to digital signals, prior to any processing, can be prohibitively expensive. Native analog processing (NAP) negates the need for analog-to-digital conversion by working in the analog domain. NAP can be used to implement data processing functions inexpensively, but can achieve only limited accuracy; on the other hand, digital processing can achieve high accuracy, but requires the overhead of analog-to-digital conversion. This project presents a methodology for mixed-signal processing that hybridizes digital and analog subcircuit implementations to achieve the best of both worlds. The effort intends to actively engage with the semiconductor industry, and will train graduate and undergraduate students in the area of semiconductor design, thus alleviating the national skills shortage in this area.In the first step, computing tasks are automatically partitioned into hybrid analog/digital segments, with the goal of meeting system-level constraints on throughput, power, and noise/error. The computations associated with a task are abstractly represented by a dataflow graph (DFG). This representation is widely used to model a variety of tasks, including those commonly used in digital signal processing and machine learning. The nodes in the DFG are mapped to analog or digital implementations, using cost functions that represent the cost of implementation, as well as the cost of any required analog-to-digital or digital-to-analog conversion. Next, the analog and digital circuitry is optimized to build a silicon implementation at the layout level, based on cutting-edge transistor technologies, which involve restrictive design rules that impose limitations such as unidirectional routing and gridded layout. The optimizations are facilitated by novel techniques for back-end analysis, synthesis, and implementation developed in this project, including transistor and interconnect optimizations, placement and routing techniques that are specifically targeted to mixed-signal designs, and compact performance machine-learning-based model generation that efficiently predicts circuit performance. The project thus automatically translates the system-level DFG specification of a computing task to an optimized mixed-signal silicon implementation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着计算在日常生活的各个方面变得普遍,计算硬件必须允许增加与物理世界的交互。这种相互作用采用本质上是模拟的感测信号的形式,例如,传感器可以输出可以呈现连续范围值的电压。传统主流计算将这些数据数字化,将其转换为数字 0 和 1,以便进行高效的分析和处理。然而,随着感测到的模拟数据量呈指数级增长,数字处理器将面临来自外部传感器的海量数据。 对于如此大量的数据,即使在进行任何处理之前将模拟输入数据转换为数字信号的成本也可能非常昂贵。 本机模拟处理 (NAP) 通过在模拟域中工作,无需进行模数转换。 NAP可以廉价地实现数据处理功能,但只能达到有限的精度;另一方面,数字处理可以实现高精度,但需要模数转换的开销。该项目提出了一种混合信号处理方法,该方法混合了数字和模拟子电路实现,以实现两全其美。该项目旨在积极参与半导体行业,培养半导体设计领域的研究生和本科生,从而缓解该领域的国家技能短缺问题。第一步,计算任务自动划分为混合模拟/数字段,目标是满足吞吐量、功耗和噪声/错误的系统级限制。与任务相关的计算由数据流图(DFG)抽象表示。这种表示形式广泛用于对各种任务进行建模,包括数字信号处理和机器学习中常用的任务。 DFG 中的节点使用表示实施成本以及任何所需的模数或数模转换成本的成本函数映射到模拟或数字实施。接下来,基于尖端晶体管技术,对模拟和数字电路进行优化,以在布局级别构建硅实现,其中涉及限制性设计规则,这些规则施加了单向布线和网格布局等限制。该项目中开发的后端分析、综合和实现的新技术促进了优化,包括晶体管和互连优化、专门针对混合信号设计的布局和布线技术,以及基于机器学习的紧凑性能有效预测电路性能的模型生成。因此,该项目自动将计算任务的系统级 DFG 规范转换为优化的混合信号芯片实现。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Performance-driven Wire Sizing for Analog Integrated Circuits
模拟集成电路性能驱动的布线尺寸
- DOI:10.1145/3559542
- 发表时间:2022-08-26
- 期刊:
- 影响因子:1.4
- 作者:Yaguang Li;Yishuang Lin;Meghna Madhusudan;A. Sharma;S. Sapatnekar;R. Harjani;Jiang Hu
- 通讯作者:Jiang Hu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jiang Hu其他文献
Sequence and haplotypes of ankyrin 1 gene (ANK1) and their association with carcass and meat quality traits in yak
牦牛锚蛋白1基因(ANK1)的序列和单倍型及其与胴体和肉质性状的关联
- DOI:
10.1007/s00335-021-09861-9 - 发表时间:
2021-03-02 - 期刊:
- 影响因子:2.5
- 作者:
Jiang Hu;Xiaoli Gao;Bingang Shi;Haiqing Chen;Zhidong Zhao;Jiqing Wang;Xiu Liu;Shaobin Li;Yuzhu Luo - 通讯作者:
Yuzhu Luo
Canonical correlation coefficients of high-dimensional Gaussian vectors: Finite rank case
高维高斯向量的典型相关系数:有限秩情况
- DOI:
10.1214/18-aos1704 - 发表时间:
2017-04-08 - 期刊:
- 影响因子:0
- 作者:
Z. Bao;Jiang Hu;G. Pan;Wang Zhou - 通讯作者:
Wang Zhou
Integrated CAD/CAM Software for Steel Tubular Truss Structures
适用于钢管桁架结构的集成 CAD/CAM 软件
- DOI:
10.4028/www.scientific.net/amr.139-141.1117 - 发表时间:
2010-10-01 - 期刊:
- 影响因子:0
- 作者:
Z. Wang;Xiaoqun Luo;Jiang Hu;Z. Yang - 通讯作者:
Z. Yang
Identification of a novel tillering dwarf mutant and fine mapping of the TDDL(T) gene in rice (Oryza sativa L.)
水稻 (Oryza sativa L.) 新型分蘖矮化突变体的鉴定和 TDDL(T) 基因的精细定位
- DOI:
10.1007/s11434-009-0292-2 - 发表时间:
2009-06-18 - 期刊:
- 影响因子:0
- 作者:
Zhenyu Gao;Xiaohui Liu;Longbiao Guo;Jian Liu;Guojun Dong;Jiang Hu;B. Han;Q. Qian - 通讯作者:
Q. Qian
Machine-Learning Based Delay Prediction for FPGA Technology Mapping
基于机器学习的 FPGA 技术映射延迟预测
- DOI:
10.1145/3557988.3569713 - 发表时间:
2022-11-03 - 期刊:
- 影响因子:0
- 作者:
Hailiang Hu;Jiang Hu;Fan Zhang;Binghe Tian;Ismail Bustany - 通讯作者:
Ismail Bustany
Jiang Hu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jiang Hu', 18)}}的其他基金
Travel: Workshop on Shared Infrastructure for Machine Learning Electronic Design Automation
旅行:机器学习电子设计自动化共享基础设施研讨会
- 批准号:
2310319 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Revitalizing EDA from a Machine Learning Perspective
合作研究:SHF:媒介:从机器学习的角度振兴 EDA
- 批准号:
2106725 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
RTML: Small: Real-Time Model-Based Bayesian Reinforcement Learning
RTML:小型:基于实时模型的贝叶斯强化学习
- 批准号:
1937396 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
STARSS: Small: Collaborative: Physical Design for Secure Split Manufacturing of ICs
STARSS:小型:协作:IC 安全分割制造的物理设计
- 批准号:
1618824 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: Variation-Resilient VLSI Systems with Cross-Layer Controlled Approximation
SHF:小型:协作研究:具有跨层控制逼近的抗变化 VLSI 系统
- 批准号:
1525749 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Design Automation for Cost-Effective Implementation of Adaptive Integrated Circuits
用于经济高效地实现自适应集成电路的设计自动化
- 批准号:
1255193 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似国自然基金
面向5G通信的超高频FBAR耗散机理和耗散稳定性研究
- 批准号:12302200
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
宽运行范围超高频逆变系统架构拓扑与调控策略研究
- 批准号:52377175
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
超高频同步整流DC-DC变换器效率优化关键技术研究
- 批准号:62301375
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
衔接蛋白SHF负向调控胶质母细胞瘤中EGFR/EGFRvIII再循环和稳定性的功能及机制研究
- 批准号:82302939
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
超高频光声频谱渐进式调制下的光声显微成像轴向分辨率提升研究
- 批准号:62265011
- 批准年份:2022
- 资助金额:34 万元
- 项目类别:地区科学基金项目
相似海外基金
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331301 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402806 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
- 批准号:
2423813 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant