Collaborative Research: III: Medium: A consolidated framework of computational privacy and machine learning
合作研究:III:媒介:计算隐私和机器学习的综合框架
基本信息
- 批准号:2212175
- 负责人:
- 金额:$ 26.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Machine learning has grown to increase prominence over the past years, finding applications in various domains from image and speech processing to disease diagnosis. Despite the great success of machine learning techniques, massive amounts of data are collected and used to train the machine learning models. The privacy of sensitive data has become a big concern. Existing efforts are still preliminary, and enormous challenges remain to be resolved. Crucially, stronger privacy protection guarantees often sacrifice important properties of machine learning models, such as predictive utility and fairness, which can be undesirable or completely unacceptable. This project develops a consolidated privacy protection framework for machine learning systems that comprehensively considers the optimal trade-offs between computational privacy and several critical properties of machine learning, including utility, fairness, and distributed learning. The project will provide a comprehensive set of tools to protect data privacy for real-world machine learning applications under different circumstances. The privacy-preserving techniques will have a transformative impact on machine learning systems used by various sectors, allowing companies and hospitals to enjoy the advantages of machine learning techniques on big data while protecting data privacy under corresponding regulations.The research project thoroughly examines and discusses the real-world complicacy or restrictions when applying differential privacy, from privacy-utility trade-off, privacy-fairness relation, privacy in distributed learning, to post-learning privacy protection. The framework developed by the project takes deep root in rigorous optimization frameworks, often accompanied by theoretical guarantees and aided by cutting-edge algorithmic tools such as meta-learning, adversarial learning, and federated learning. Besides, the framework carries the following methodological innovations: differential privacy tailored to learning problems; customized privacy addressing heterogeneity in collaborative learning; privacy-protection of learned models through unlearning; consolidated privacy and fairness in learning. Those efforts will significantly augment the practicality and scalability of differential privacy. The project will be systematically evaluated on various real-world medical applications, and the tools will be readily used to tackle critical challenges in medical research. The outcomes will be incorporated into multiple courses at both undergraduate and graduate levels. The research outcomes will be disseminated broadly and comprehensively through open-source software releases and workshops, the involvement of undergraduate research, and outreach to K-12 education, focusing on minorities and under-representative groups in STEM education. Students at different levels and disciplines, STEM and liberal arts, will be participating in the research on privacy and machine learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去的几年里,机器学习的重要性日益凸显,在从图像和语音处理到疾病诊断的各个领域都有应用。尽管机器学习技术取得了巨大成功,但仍然收集了大量数据并用于训练机器学习模型。敏感数据的隐私已成为一个大问题。现有的努力仍处于初步阶段,还有巨大的挑战有待解决。至关重要的是,更强的隐私保护保证通常会牺牲机器学习模型的重要属性,例如预测效用和公平性,这可能是不可取的或完全不可接受的。该项目为机器学习系统开发了一个统一的隐私保护框架,该框架综合考虑了计算隐私与机器学习的几个关键属性(包括效用、公平性和分布式学习)之间的最佳权衡。该项目将提供一套全面的工具来保护不同情况下真实机器学习应用程序的数据隐私。隐私保护技术将对各行业使用的机器学习系统产生变革性影响,让企业和医院在享受相应法规下的数据隐私保护的同时,享受机器学习技术在大数据上的优势。该研究项目深入研究和讨论了应用差分隐私时现实世界的复杂性或限制,从隐私-效用权衡、隐私-公平关系、分布式学习中的隐私,到学习后隐私保护。该项目开发的框架深深植根于严格的优化框架,往往伴随着理论保证,并辅以元学习、对抗学习、联邦学习等前沿算法工具。此外,该框架还具有以下方法创新:针对学习问题的差异隐私;定制隐私解决协作学习中的异构性;通过取消学习来保护学习模型的隐私;巩固学习中的隐私和公平。这些努力将显着增强差异隐私的实用性和可扩展性。该项目将在各种现实世界的医疗应用中进行系统评估,并且这些工具将很容易用于应对医学研究中的关键挑战。研究成果将被纳入本科和研究生级别的多个课程中。研究成果将通过开源软件发布和研讨会、本科生研究的参与以及 K-12 教育的推广来广泛、全面地传播,重点关注 STEM 教育中的少数群体和代表性不足的群体。不同级别和学科、STEM 和文科的学生都将参与隐私和机器学习的研究。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Patient Similarity Learning with Selective Forgetting
通过选择性遗忘进行患者相似性学习
- DOI:10.1109/bibm55620.2022.9995016
- 发表时间:2022-12
- 期刊:
- 影响因子:0
- 作者:Qian, Wei;Zhao, Chenxu;Shao, Huajie;Chen, Minghan;Wang, Fei;Huai, Mengdi
- 通讯作者:Huai, Mengdi
Data heterogeneity in federated learning with Electronic Health Records: Case studies of risk prediction for acute kidney injury and sepsis diseases in critical care
电子健康记录联邦学习中的数据异质性:重症监护中急性肾损伤和脓毒症风险预测的案例研究
- DOI:10.1371/journal.pdig.0000117
- 发表时间:2023-03
- 期刊:
- 影响因子:0
- 作者:Rajendran, Suraj;Xu, Zhenxing;Pan, Weishen;Ghosh, Arnab;Wang, Fei
- 通讯作者:Wang, Fei
Machine learning enabled subgroup analysis with real-world data to inform clinical trial eligibility criteria design
机器学习支持使用真实世界数据进行亚组分析,为临床试验资格标准设计提供信息
- DOI:10.1038/s41598-023-27856-1
- 发表时间:2023-12
- 期刊:
- 影响因子:4.6
- 作者:Xu, Jie;Zhang, Hao;Zhang, Hansi;Bian, Jiang;Wang, Fei
- 通讯作者:Wang, Fei
Biomedical discovery through the integrative biomedical knowledge hub (iBKH)
通过综合生物医学知识中心 (iBKH) 进行生物医学发现
- DOI:10.1016/j.isci.2023.106460
- 发表时间:2023-04
- 期刊:
- 影响因子:5.8
- 作者:Su, Chang;Hou, Yu;Zhou, Manqi;Rajendran, Suraj;Maasch, Jacqueline R.M.;Abedi, Zehra;Zhang, Haotan;Bai, Zilong;Cuturrufo, Anthony;Guo, Winston;et al
- 通讯作者:et al
Single-cell multi-omics topic embedding reveals cell-type-specific and COVID-19 severity-related immune signatures
单细胞多组学主题嵌入揭示了细胞类型特异性和与 COVID-19 严重程度相关的免疫特征
- DOI:10.1016/j.crmeth.2023.100563
- 发表时间:2023-08-28
- 期刊:
- 影响因子:0
- 作者:Zhou, Manqi;Zhang, Hao;Bai, Zilong;Mann;Wang, Fei;Li, Yue
- 通讯作者:Li, Yue
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fei Wang其他文献
Chemical constituents of Uncaria rhynchophylloides How and their chemotaxonomic significance
钩藤的化学成分及其化学分类学意义
- DOI:
10.1016/j.bse.2020.104051 - 发表时间:
2020-08-01 - 期刊:
- 影响因子:1.6
- 作者:
Yun Wang;Yin;Jie Su;Rong;Fei Wang;Kou Wang - 通讯作者:
Kou Wang
Raman-induced transfer of optical vortices
拉曼引起的光学涡旋转移
- DOI:
10.1088/1612-202x/ac5047 - 发表时间:
2022-02-14 - 期刊:
- 影响因子:1.7
- 作者:
L. Ding;Fei Wang;Fanggui Hu - 通讯作者:
Fanggui Hu
Research on Refracturing Technology of Horizontal Wells Based on Dynamic Drainage Volume
基于动态排水量的水平井重复压裂技术研究
- DOI:
10.3389/fenrg.2022.864527 - 发表时间:
2022-05-03 - 期刊:
- 影响因子:0
- 作者:
Q. Dong;Jianshan Li;Lian;Fei Wang;Kun Zhao;Fei Huo - 通讯作者:
Fei Huo
Performance and preparation of cation-exchange chromatographic stationary phases without negatively charged groups for protein separation
用于蛋白质分离的无负电基团的阳离子交换色谱固定相的性能和制备
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Fan Yang;Fei Wang;Lian Zhang - 通讯作者:
Lian Zhang
Research on the Dissemination Process of Hot Words
热词传播过程研究
- DOI:
10.25236/ajhss.2021.040712 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Fei Wang; Hiroshi Yokoi - 通讯作者:
Hiroshi Yokoi
Fei Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fei Wang', 18)}}的其他基金
Finite Temperature Simulation of Non-Markovian Quantum Dynamics in Condensed Phase using Quantum Computers
使用量子计算机对凝聚相非马尔可夫量子动力学进行有限温度模拟
- 批准号:
2320328 - 财政年份:2023
- 资助金额:
$ 26.51万 - 项目类别:
Continuing Grant
ERI: Progressive Formation and Collapse Mechanisms of Sinkholes Caused by Defective Buried Pipes
ERI:埋地管道缺陷造成天坑的渐进形成和塌陷机制
- 批准号:
2301392 - 财政年份:2023
- 资助金额:
$ 26.51万 - 项目类别:
Standard Grant
RAPID: Understanding the Transmission and Prevention of COVID-19 with Biomedical Knowledge Engineering
RAPID:利用生物医学知识工程了解 COVID-19 的传播和预防
- 批准号:
2027970 - 财政年份:2020
- 资助金额:
$ 26.51万 - 项目类别:
Standard Grant
CAREER: Interpretable Deep Modeling of Discrete Time Event Sequences
职业:离散时间事件序列的可解释深度建模
- 批准号:
1750326 - 财政年份:2018
- 资助金额:
$ 26.51万 - 项目类别:
Continuing Grant
Student Travel Grant: Sixth IEEE International Conference on Healthcare Informatics (ICHI 2018)
学生旅费补助金:第六届 IEEE 国际医疗信息学会议 (ICHI 2018)
- 批准号:
1833794 - 财政年份:2018
- 资助金额:
$ 26.51万 - 项目类别:
Standard Grant
Student Travel Grant: Sixth IEEE International Conference on Healthcare Informatics (ICHI 2018)
学生旅费补助金:第六届 IEEE 国际医疗信息学会议 (ICHI 2018)
- 批准号:
1833794 - 财政年份:2018
- 资助金额:
$ 26.51万 - 项目类别:
Standard Grant
III: Small: Collaborative Research: Comprehensive Heterogeneous Response Regression from Complex Data
III:小:协作研究:复杂数据的综合异质响应回归
- 批准号:
1716432 - 财政年份:2017
- 资助金额:
$ 26.51万 - 项目类别:
Standard Grant
EAGER: Patient Similarity Learning with Massive Clinical Data and Its Applications in Cohort Identification
EAGER:海量临床数据的患者相似性学习及其在队列识别中的应用
- 批准号:
1650723 - 财政年份:2016
- 资助金额:
$ 26.51万 - 项目类别:
Standard Grant
CAREER: The molecular mechanisms governing fate decisions of human embryonic stem cells
职业:控制人类胚胎干细胞命运决定的分子机制
- 批准号:
0953267 - 财政年份:2010
- 资助金额:
$ 26.51万 - 项目类别:
Continuing Grant
SBIR Phase I: Star Polymer Micelles as Targeted Drug Delivery System
SBIR 第一阶段:星形聚合物胶束作为靶向药物输送系统
- 批准号:
0230108 - 财政年份:2003
- 资助金额:
$ 26.51万 - 项目类别:
Standard Grant
相似国自然基金
酸枣仁皂苷A对三叉神经痛中P2X7受体介导的NLRP3/Caspase-1通路的作用研究
- 批准号:82360199
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
三维内转进气道唇口弯曲激波复杂干扰机理研究
- 批准号:12302389
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
芯片级原子钟用高效率双功能准三维亚波长结构器件研究
- 批准号:62305252
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
复杂环境下的水下三维路径规划方法研究
- 批准号:62371405
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
P-S-Se三元共价框架结构设计及在锂硫电池中的无穿梭效应储锂机理研究
- 批准号:22379114
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
- 批准号:
2420691 - 财政年份:2024
- 资助金额:
$ 26.51万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
- 批准号:
2322973 - 财政年份:2024
- 资助金额:
$ 26.51万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
- 批准号:
2322974 - 财政年份:2024
- 资助金额:
$ 26.51万 - 项目类别:
Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
- 批准号:
2342497 - 财政年份:2024
- 资助金额:
$ 26.51万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: A DREAM Proactive Conversational System
合作研究:III:小型:一个梦想的主动对话系统
- 批准号:
2336769 - 财政年份:2024
- 资助金额:
$ 26.51万 - 项目类别:
Standard Grant