Collaborative Research: Deformations of Geometric Structures in Current Mathematics
合作研究:当代数学中几何结构的变形
基本信息
- 批准号:2212148
- 负责人:
- 金额:$ 1.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-15 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will conduct a two week long conference on the topic of "Deformations of Geometric Structures in Current Mathematics", to be hosted at Columbia University from May 3-6, 2022 and the Center of Mathematical Sciences and Applications (CMSA) at Harvard University from May 9-12, 2022. This event will bring together early career researchers and world renowned mathematicians from a variety of fields, including complex analysis, symplectic geometry, differential geometry and partial differential equations. This event will provide a great opportunity for young mathematicians, and mathematicians from under-represented groups to attend the conference and build relationships and collaborations with leaders in a variety of mathematical fields.Deformations of geometric structures has been an exceptionally active theme in current developments in mathematics, with an infux of ideas from many independent sources, including algebraic geometry, symplectic geometry, partial differential equations, and string theory. The ideas have lead to significant advances in enumerative geometry, Gromov-Witten Theory, symplectic geometry, as well as moduli problems and the discovery of new geometric and topological invariants. The conference will host a wide array of talks from experts in a variety of fields where these ideas have been infuential. Deformations of geometric structures were pioneered by the late Professor Masatake Kuranishi of Columbia University, with his landmark works on locally complete deformations and the many novel techniques which he introduced. The conference website can be found at https://cmsa.fas.harvard.edu/kuranish-conference/This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将于 2022 年 5 月 3 日至 6 日在哥伦比亚大学和哈佛大学数学科学与应用中心 (CMSA) 举办为期两周的会议,主题为“当前数学中的几何结构变形” 2022 年 5 月 9 日至 12 日。本次活动将汇集复分析、辛几何、微分几何和偏微分等多个领域的早期职业研究人员和世界知名数学家方程。此次活动将为年轻数学家和来自代表性不足群体的数学家提供一个很好的机会参加会议,并与各个数学领域的领导者建立关系和合作。几何结构的变形一直是当前发展中一个异常活跃的主题。数学,融合了许多独立来源的思想,包括代数几何、辛几何、偏微分方程和弦理论。这些思想导致了枚举几何、格罗莫夫-维滕理论、辛几何以及模问题和新几何和拓扑不变量的发现的重大进展。会议将举办来自各个领域的专家的广泛演讲,这些观点在这些领域具有影响力。几何结构的变形是由哥伦比亚大学已故教授 Masatake Kuranishi 开创的,他在局部完全变形方面具有里程碑意义的工作,并引入了许多新颖的技术。该会议网站可访问 https://cmsa.fas.harvard.edu/kuranish-conference/ 该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Duong Phong其他文献
Duong Phong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Duong Phong', 18)}}的其他基金
Problems in Complex Geometry, Partial Differential Equations, and Mathematical Physics
复杂几何、偏微分方程和数学物理问题
- 批准号:
2203273 - 财政年份:2022
- 资助金额:
$ 1.53万 - 项目类别:
Continuing Grant
Problems in Complex Analysis, Partial Differential Equations, and Mathematical Physics
复分析、偏微分方程和数学物理问题
- 批准号:
1855947 - 财政年份:2019
- 资助金额:
$ 1.53万 - 项目类别:
Standard Grant
Problems in Complex Analysis and Complex Geometry
复杂分析和复杂几何问题
- 批准号:
1266033 - 财政年份:2013
- 资助金额:
$ 1.53万 - 项目类别:
Continuing Grant
Problems in complex analysis, complex geometry, and mathematical physics
复分析、复几何和数学物理中的问题
- 批准号:
0757372 - 财政年份:2008
- 资助金额:
$ 1.53万 - 项目类别:
Continuing Grant
Conference on Complex Analysis, Differential Geometry, and Partial Differential Equations; May 2-6, 2005; New York, NY
复分析、微分几何和偏微分方程会议;
- 批准号:
0456822 - 财政年份:2005
- 资助金额:
$ 1.53万 - 项目类别:
Standard Grant
2003-2004 Special Year in Geometric and Spectral Analysis; Montreal, Canada
2003-2004 几何和光谱分析特别年;
- 批准号:
0339017 - 财政年份:2004
- 资助金额:
$ 1.53万 - 项目类别:
Standard Grant
Problems in Analysis at the Interface with Geometry and Physics
几何与物理交叉点的分析问题
- 批准号:
0245371 - 财政年份:2003
- 资助金额:
$ 1.53万 - 项目类别:
Continuing Grant
Problems at the Interface of Analysis with Geometry and Physics
几何与物理分析的交叉问题
- 批准号:
9800783 - 财政年份:1998
- 资助金额:
$ 1.53万 - 项目类别:
Continuing Grant
Mathematical Sciences: Oscillatory and Singular Integrals in Analysis, Geometry, and Physics
数学科学:分析、几何和物理中的振荡积分和奇异积分
- 批准号:
9505399 - 财政年份:1995
- 资助金额:
$ 1.53万 - 项目类别:
Continuing Grant
Mathematical Sciences: Singular Integrals and Fourier Integral Operators
数学科学:奇异积分和傅里叶积分算子
- 批准号:
9204196 - 财政年份:1992
- 资助金额:
$ 1.53万 - 项目类别:
Continuing Grant
相似国自然基金
磁流变弹性体在有限变形下的力磁耦合本构建模研究
- 批准号:12372068
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
多元异构中锰钢变形与断裂机理的原位研究
- 批准号:52371105
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于抛/喷浆组合工艺的热轧不锈钢板带表面氧化皮剥离机理及基体表面变形机制研究
- 批准号:52375361
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于大塑性变形晶粒细化的背压触变反挤压锡青铜偏析行为调控研究
- 批准号:52365047
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
冰岩斜坡地震非协调变形与拉剪破裂机制研究
- 批准号:42377194
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Deformations of Geometric Structures in Current Mathematics
合作研究:当代数学中几何结构的变形
- 批准号:
2211916 - 财政年份:2022
- 资助金额:
$ 1.53万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Generalized Geometry, String Theory and Deformations
FRG:协作研究:广义几何、弦理论和变形
- 批准号:
1159049 - 财政年份:2012
- 资助金额:
$ 1.53万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Generalized Geometry, String Theory and Deformations
FRG:协作研究:广义几何、弦理论和变形
- 批准号:
1159404 - 财政年份:2012
- 资助金额:
$ 1.53万 - 项目类别:
Standard Grant
FRG Collaborative Research: Generalized Geometry, String Theory and Deformations
FRG 合作研究:广义几何、弦理论和变形
- 批准号:
1159412 - 财政年份:2012
- 资助金额:
$ 1.53万 - 项目类别:
Standard Grant
Collaborative Research: Cohomology and Deformations of Algebras
合作研究:代数的上同调和变形
- 批准号:
1101177 - 财政年份:2011
- 资助金额:
$ 1.53万 - 项目类别:
Standard Grant