Collaborative Research: SHF: Medium: Near-Hardware Program Repair and Optimization

合作研究:SHF:中:近硬件程序修复和优化

基本信息

项目摘要

The project addresses today's reality that special-purpose computing hardware and hardware accelerators have become de facto necessities for supporting the large-scale computations used for data analysis, AI and machine learning, scientific modeling, and social-media platforms. At the same time, education and existing tools still require computer programmers to have deep knowledge of both low-level hardware considerations and higher-level application logic. Higher levels of program abstraction are more tractable for humans and automated program improvement methods because they separate algorithm logic from implementation details, while lower 'near-hardware' levels of abstraction are difficult for humans to understand and optimize because of the many crucial architectural and hardware details that often interact with application-level logic in non-trivial ways. The project addresses this gap by developing automated methods for near-hardware run-time optimization of programs, bug repair, and creation of new programs. It includes an evaluation featuring interactive human evaluations, which studies human interactions with the project's automated tools along several dimensions.The project aims to improve the automation of software engineering tasks for near-hardware domains. This requires addressing fundamental questions such as: What representations span multiple levels of abstraction? How can one analyze and select optimizations respecting both hardware and software constraints for real-world applications? How can a tool communicate its results to users who may lack expertise in either domain-specific architecture or hardware-specific details? The project adapts higher-level automated program improvement methods to three specific tasks: automatically finding optimizations that reduce general-purpose GPU code runtimes; repairing defects in circuit designs; and synthesizing debuggable code for hardware accelerators. Each task requires representations and algorithms that cross abstraction levels, and each task features an evaluation plan that places explicit emphasis on the human element, measuring the semantic gap between automatically lifted optimizations and different levels of human expertise, measuring ease of use of interactive synthesis tools across human expertise levels, and using eye tracking to investigate which elements of a multi-edit patch are most difficult understand. The project will enable many of the benefits of source-level automated program improvement to be available to near-hardware domains.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目解决了当今的现实,即专用计算硬件和硬件加速器已成为支持数据分析、人工智能和机器学习、科学建模和社交媒体平台的大规模计算的事实上的必需品。与此同时,教育和现有工具仍然要求计算机程序员对低级硬件考虑因素和高级应用逻辑有深入的了解。 较高级别的程序抽象对于人类和自动化程序改进方法来说更容易处理,因为它们将算法逻辑与实现细节分开,而较低的“近硬件”抽象级别由于许多关键的架构和硬件而难以理解和优化。通常以非平凡的方式与应用程序级逻辑交互的细节。该项目通过开发自动化方法来解决这一差距,以实现程序的近硬件运行时优化、错误修复和新程序的创建。 它包括一个以交互式人类评估为特色的评估,该评估从多个维度研究人类与项目自动化工具的交互。该项目旨在提高近硬件领域软件工程任务的自动化。这需要解决一些基本问题,例如:什么表示跨越多个抽象级别?如何根据实际应用的硬件和软件约束来分析和选择优化?工具如何向缺乏特定领域架构或特定硬件细节专业知识的用户传达其结果?该项目将更高级别的自动化程序改进方法应用于三个特定任务:自动查找可减少通用 GPU 代码运行时间的优化;修复电路设计中的缺陷;并为硬件加速器合成可调试代码。每个任务都需要跨越抽象级别的表示和算法,并且每个任务都有一个评估计划,明确强调人的因素,测量自动提升的优化和不同级别的人类专业知识之间的语义差距,测量交互式综合工具的易用性跨越人类专业知识水平,并使用眼动追踪来调查多重编辑补丁的哪些元素最难理解。 该项目将使源级自动化程序改进的许多好处能够应用于近硬件领域。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
START: A Framework for Trusted and Resilient Autonomous Vehicles (Practical Experience Report)
START:可信且有弹性的自动驾驶汽车框架(实践经验报告)
How Do We Read Formal Claims? Eye-Tracking and the Cognition of Proofs about Algorithms
我们如何阅读正式索赔?
CirFix: Automated Hardware Repair and its Real-World Applications
CirFix:自动化硬件修复及其实际应用
  • DOI:
    10.1109/tse.2023.3269899
  • 发表时间:
    2023-07-01
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Priscila Santiesteban;Yu Huang;Westley Weimer;Hammad Ahmad
  • 通讯作者:
    Hammad Ahmad
Synthesizing Legacy String Code for FPGAs Using Bounded Automata Learning
使用有界自动机学习合成 FPGA 的遗留字符串代码
  • DOI:
    10.1109/mm.2022.3178037
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Angstadt, Kevin;Tracy, Tommy;Skadron, Kevin;Jeannin, Jean;Weimer, Westley
  • 通讯作者:
    Weimer, Westley
Digging into Semantics: Where do search-based software repair methods search?
深入语义:基于搜索的软件修复方法在哪里搜索?
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Westley Weimer其他文献

Exception-Handling Bugs in Java and a Language Extension to Avoid Them
Java 中的异常处理错误以及避免这些错误的语言扩展
  • DOI:
    10.1007/11818502_2
  • 发表时间:
    2006-06-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Westley Weimer
  • 通讯作者:
    Westley Weimer
A MapReduce framework to improve template matching uncertainty
改善模板匹配不确定性的MapReduce框架
To read or to rotate? comparing the effects of technical reading training and spatial skills training on novice programming ability
阅读还是旋转?
Digging into Semantics: Where Do Search-Based Software Repair Methods Search?
深入语义:基于搜索的软件修复方法在哪里搜索?
  • DOI:
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hammad Ahmad;Padraic Cashin;Stephanie Forrest;Westley Weimer
  • 通讯作者:
    Westley Weimer
Nighthawk: Transparent System Introspection from Ring -3
Nighthawk:来自 Ring -3 的透明系统内省
  • DOI:
    10.1007/978-3-030-29962-0_11
  • 发表时间:
    2019-09-23
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lei Zhou;Jidong Xiao;Kevin Leach;Westley Weimer;Fengwei Zhang;Guojun Wang
  • 通讯作者:
    Guojun Wang

Westley Weimer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Westley Weimer', 18)}}的其他基金

SHF: Small: Collaborative Research: Understanding and Evolving Search-based Software Improvement
SHF:小型:协作研究:理解和发展基于搜索的软件改进
  • 批准号:
    1908633
  • 财政年份:
    2019
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
SHF: Medium: Collaborative Research: Program Analytics: Using Trace Data for Localization, Explanation and Synthesis
SHF:媒介:协作研究:程序分析:使用跟踪数据进行本地化、解释和综合
  • 批准号:
    1763674
  • 财政年份:
    2018
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
SHF: Small: Synthesizing Human-Readable Documentation
SHF:小型:综合人类可读的文档
  • 批准号:
    1116289
  • 财政年份:
    2011
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Travel Grant to ESEC/FSE Doctoral Symposia
ESEC/FSE 博士研讨会旅费资助
  • 批准号:
    1138306
  • 财政年份:
    2011
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
CAREER: Scalable and Trustworthy Automatic Program Repair
职业:可扩展且值得信赖的自动程序修复
  • 批准号:
    0954024
  • 财政年份:
    2010
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
SHF: Medium: Collaborative Research: Fixing Real Bugs in Real Programs Using Evolutionary Algorithms
SHF:媒介:协作研究:使用进化算法修复实际程序中的实际错误
  • 批准号:
    0905373
  • 财政年份:
    2009
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant

相似国自然基金

面向5G通信的超高频FBAR耗散机理和耗散稳定性研究
  • 批准号:
    12302200
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
宽运行范围超高频逆变系统架构拓扑与调控策略研究
  • 批准号:
    52377175
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
超高频同步整流DC-DC变换器效率优化关键技术研究
  • 批准号:
    62301375
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
衔接蛋白SHF负向调控胶质母细胞瘤中EGFR/EGFRvIII再循环和稳定性的功能及机制研究
  • 批准号:
    82302939
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
强震动环境下10-100Hz超高频GNSS误差精细建模及监测应用研究
  • 批准号:
    42274025
  • 批准年份:
    2022
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331301
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402806
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402805
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了