Learning Decision Rules in Shifting Environments
学习不断变化的环境中的决策规则
基本信息
- 批准号:2242876
- 负责人:
- 金额:$ 44.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This research project will develop new methods and software for data-driven decision making under environmental shift. Most work in data-driven decision making fundamentally relies on the stability of the statistical environment. Available tools for data-driven decision making generally assume that future environments in which decision rules will be deployed resemble the past environment where data was collected. Many real-world applications, however, display significant environmental shift due to various factors. The newly developed methods will expand researchers' ability to apply data-driven decision making to systems with environmental shift. Possible application areas range from medical settings and social programs to online marketplaces. Educational activities will include the training of graduate students and the development of learning resources based in part on the results of this research. All research products will be disseminated via publicly available repositories, and software will be released under an open-source license. This research project will provide a practical deep learning-based framework for learning decision rules that is robust to unknown distributional shifts. The project will develop methods for learning decision rules in settings with unknown distributional shifts, and where some sub-populations may be under- or over-sampled according to unobservable characteristics. Consider, for example, a volunteer-based study on the effects of antidepressants among patients suffering from depression, where motivation to take steps to fight depression could be an unobserved attribute that is overrepresented in the study population – and so the set of people we are able to collect data on may differ from the full patient population along some important but unobservable attributes. The project also will investigate learning decision rules under distributional shifts that naturally arise via equilibrium behavior in social settings with agents who interact with each other (e.g., by buying and selling goods to each other in a marketplace) and provide methods to address the resulting challenges. Overall, this project will provide new methodological and software solutions – as well as associated educational resources – that will expand the class of problems where data-driven decision making can be successfully deployed.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究项目将开发新的方法和软件,用于在环境变化下以数据驱动的决策制定。数据驱动决策中的大多数工作从根本上依赖于统计环境的稳定性。用于数据驱动决策的可用工具通常假定将未来部署规则部署的环境类似于收集数据的过去环境。但是,由于各种因素,许多现实世界应用都显示出明显的环境变化。新开发的方法将扩大研究人员将数据驱动决策应用于环境转变的系统的能力。可能的应用领域范围从医疗环境和社会计划到在线市场。教育活动将包括对研究生的培训以及基于本研究结果的学习资源的发展。所有研究产品将通过公开可用的存储库进行传播,并且软件将根据开源许可发布。该研究项目将为学习决策规则提供一个实用的基于深度学习的框架,该框架对未知的分配变化是可靠的。该项目将在具有未知分配变化的设置中开发学习决策规则的方法,并且根据无法观察到的特征,某些子选集可能会被不足或过度采样。例如,考虑一下,基于志愿者对抑郁症患者抗抑郁药的影响的研究,在研究人群中,采取措施对抗抑郁症的动机可能是一种未观察到的属性,在研究人群中代表过多,因此,我们能够收集的一组人可能会沿着一些重要但不可吸引的属性属性属于所有患者人群来差异。该项目还将调查在分配转变下的学习决策规则,这些决定自然会通过社交环境中的同等行为与彼此互动的代理商(例如,通过在市场中购买和销售商品相互互动),并提供解决挑战的方法。总体而言,该项目将提供新的方法论和软件解决方案以及相关的教育资源,这些解决方案将扩大可以成功部署数据驱动决策的问题类别。该奖项反映了NSF的法定任务,并通过使用基金会的知识分子优点和更广泛的影响审查标准来评估被认为是宝贵的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stefan Wager其他文献
Policy Learning with Competing Agents
与竞争代理的策略学习
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Roshni Sahoo;Stefan Wager - 通讯作者:
Stefan Wager
CLUMPY RIFFLE SHUFFLES
块状 Riffe 洗牌
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Stefan Wager;Stefan Wager - 通讯作者:
Stefan Wager
Teaching Statistics at Google-Scale
Google 规模的统计学教学
- DOI:
10.1080/00031305.2015.1089790 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
N. Chamandy;Omkar Muralidharan;Stefan Wager - 通讯作者:
Stefan Wager
The Efficiency of Density Deconvolution
密度反卷积的效率
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Stefan Wager - 通讯作者:
Stefan Wager
Learning from a Biased Sample
从有偏差的样本中学习
- DOI:
10.48550/arxiv.2209.01754 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Roshni Sahoo;Lihua Lei;Stefan Wager - 通讯作者:
Stefan Wager
Stefan Wager的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stefan Wager', 18)}}的其他基金
Learning Decision Rules with Observational Data
用观察数据学习决策规则
- 批准号:
1916163 - 财政年份:2019
- 资助金额:
$ 44.91万 - 项目类别:
Standard Grant
相似国自然基金
DNMT1在胶质母细胞瘤干细胞分化启动与命运决定中的调控作用研究
- 批准号:32300478
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
解析γδT细胞及其祖细胞的起源层级和命运决定
- 批准号:82300131
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
Amhy调控翘嘴鳜鱼性别决定的分子机制
- 批准号:32302995
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
温度依赖型性别决定龟类物种性腺细胞介导温度信号转导的分子机制
- 批准号:32371570
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
Tbx2决定小鼠耳蜗内毛细胞命运机制的研究
- 批准号:32371054
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
相似海外基金
Strain and Bone Fracture Healing: Image-Based Mechanics Models to Redefine the Rules
拉伤和骨折愈合:基于图像的力学模型重新定义规则
- 批准号:
10667636 - 财政年份:2022
- 资助金额:
$ 44.91万 - 项目类别:
Strain and Bone Fracture Healing: Image-Based Mechanics Models to Redefine the Rules
拉伤和骨折愈合:基于图像的力学模型重新定义规则
- 批准号:
10510045 - 财政年份:2022
- 资助金额:
$ 44.91万 - 项目类别:
Learning Decision Rules with Observational Data
用观察数据学习决策规则
- 批准号:
1916163 - 财政年份:2019
- 资助金额:
$ 44.91万 - 项目类别:
Standard Grant
Developing Flexible EHR Plug-ins to Re-Engineer Clinical Care and Research Workfl
开发灵活的 EHR 插件以重新设计临床护理和研究工作
- 批准号:
7950139 - 财政年份:2010
- 资助金额:
$ 44.91万 - 项目类别:
Developing Flexible EHR Plug-ins to Re-Engineer Clinical Care and Research Workfl
开发灵活的 EHR 插件以重新设计临床护理和研究工作
- 批准号:
8316324 - 财政年份:2010
- 资助金额:
$ 44.91万 - 项目类别: