Developing Statistical Tools for Data integration and Data Fusion for Finite Population Inference
开发用于有限总体推理的数据集成和数据融合的统计工具
基本信息
- 批准号:2242820
- 负责人:
- 金额:$ 37.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This research project will develop statistical learning tools for data integration and data fusion. Given the proliferation of new data sources, researchers are increasingly utilizing convenient but often uncontrolled big data sources, web survey panels, and administrative data. Data integration is an emerging field of study that combines multiple data sources in a reliable way. However, statistical tools for data integration are limited. The results of this research will significantly impact the analysis of complex survey data with big data, as well as scientific conclusions drawn from multiple data sets. The investigator plans to actively collaborate with researchers at different statistical agencies, and applications will be conducted to demonstrate the value of the new methods in various settings. The results of this research will be disseminated via publications, presentations, short courses, webinars, and software. Graduate students will be involved in the conduct of the research.This research project will produce statistical and machine learning tools for data integration and fusion. Statistical agencies face increasing pressure to utilize convenient but often uncontrolled sources of data. While such data sources provide timely data for a large number of variables and population elements, they often fail to represent the target population of interest because of inherent selection biases. By using an independent probability sample as a calibration sample, the selection bias in the convenience sample can be reduced; however, the statistical tools for data integration are not yet satisfactory. In survey sampling research, statistical inference combining multiple data sources is a relatively understudied topic. This research will expand the scope of survey data analysis by providing numerous statistical and machine learning tools for data integration and by enhancing the use of data integration through example applications. The investigator will address important research topics such as mass imputation using modern machine learning tools, propensity score weighting using information projection, calibration weighting with high dimensional covariates, multiple bias calibration for data integration, and optimal estimation and sampling design for data fusion.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究项目将开发用于数据集成和数据融合的统计学习工具。鉴于新数据源的扩散,研究人员越来越多地利用方便但通常不受控制的大数据源,网络调查小组和管理数据。数据集成是一个新兴的研究领域,以可靠的方式结合了多个数据源。但是,数据集成的统计工具是有限的。这项研究的结果将显着影响使用大数据对复杂调查数据的分析,以及从多个数据集得出的科学结论。研究人员计划与不同统计机构的研究人员积极合作,并将进行应用程序以证明各种环境中新方法的价值。这项研究的结果将通过出版物,演示文稿,短期课程,网络研讨会和软件传播。研究生将参与研究的进行。此研究项目将生产用于数据集成和融合的统计和机器学习工具。统计机构面临着增加的压力,以利用方便但通常不受控制的数据来源。尽管此类数据源为大量变量和人口元素提供了及时的数据,但由于固有的选择偏见,它们通常无法代表目标人群。通过使用独立的概率样本作为校准样本,可以减少方便样本中的选择偏差。但是,数据集成的统计工具尚不令人满意。在调查抽样研究中,结合多个数据源的统计推断是一个相对研究的主题。这项研究将通过提供众多用于数据集成的统计和机器学习工具并通过示例应用程序增强数据集成的使用来扩大调查数据分析的范围。研究者将讨论重要的研究主题,例如使用现代机器学习工具进行大规模插补,使用信息投影,具有高维协变量的校准加权,校准加权,多个偏差校准数据集成以及数据融合的最佳估计和抽样设计,以反映NSF的法定任务和通过评估的范围来弥补,这表明了审查的范围,并具有范围的范围。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jae-Kwang Kim其他文献
Simultaneous roasting and extraction of green coffee beans by pressurized liquid extraction
- DOI:
10.1016/j.foodchem.2018.12.061 - 发表时间:
2019-05-30 - 期刊:
- 影响因子:
- 作者:
Jiu Liang Xu;Tae Jin Kim;Jae-Kwang Kim;Yongsoo Choi - 通讯作者:
Yongsoo Choi
Physico-electrochemical properties of carbon coated LiFePO<sub>4</sub> nanoparticles prepared by different preparation method
- DOI:
10.1016/j.apsusc.2019.144630 - 发表时间:
2020-03-01 - 期刊:
- 影响因子:
- 作者:
Jae-Kwang Kim;Sang Mun Jeong - 通讯作者:
Sang Mun Jeong
Yolk–shell vanadium pentoxide integrated electrode for high-performance stretchable lithium metal battery
- DOI:
10.1016/j.est.2024.113047 - 发表时间:
2024-09-20 - 期刊:
- 影响因子:
- 作者:
Muthu Gnana Theresa Nathan;Seon-Young Yeon;Jae Seob Lee;Min Su Jo;Gil Chan Hwang;Hong-Il Kim;Fanglin Wu;Guk-Tae Kim;Ying Liu;Jin-Hee Kim;Jung Sang Cho;Jae-Kwang Kim - 通讯作者:
Jae-Kwang Kim
Li-water battery with oxygen dissolved in water as a cathode
以溶解在水中的氧为阴极的锂水电池
- DOI:
10.1149/2.0838403jes - 发表时间:
2013 - 期刊:
- 影响因子:3.9
- 作者:
Jae-Kwang Kim;Wei Yang;Jason Salim;Chao Ma;Chunwen Sun;Jianqi Li;Youngsik Kim - 通讯作者:
Youngsik Kim
Anchoring polysulfides with ternary Fe<sub>3</sub>O<sub>4</sub>/graphitic carbon/porous carbon fiber hierarchical structures for high-rate lithium–sulfur batteries
- DOI:
10.1016/j.est.2024.114591 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:
- 作者:
Ying Liu;Qinglong Meng;Rong Yang;Yiming Zou;Mingxu Li;Hyun Woo Kim;Jae-Kwang Kim;Jou-Hyeon Ahn - 通讯作者:
Jou-Hyeon Ahn
Jae-Kwang Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jae-Kwang Kim', 18)}}的其他基金
Innovations in Statistical Methodology for Complex Surveys
复杂调查统计方法的创新
- 批准号:
1733572 - 财政年份:2017
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Fractional Imputation for Incomplete Data Analysis
不完整数据分析的分数插补
- 批准号:
1324922 - 财政年份:2013
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
相似国自然基金
两样本孟德尔随机化中候选工具变量多重效应自适应定位的联合似然统计方法研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
两样本孟德尔随机化中候选工具变量多重效应自适应定位的联合似然统计方法研究
- 批准号:82173624
- 批准年份:2021
- 资助金额:55.00 万元
- 项目类别:面上项目
截面相依数据的处理效应估计与推断:理论与应用
- 批准号:71873138
- 批准年份:2018
- 资助金额:49.0 万元
- 项目类别:面上项目
基于生命历程理论和机器学习方法的儿童哮喘预测研究
- 批准号:71704144
- 批准年份:2017
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
高维度下联立方程组和工具变量模型的估计、统计推断和模型选择
- 批准号:71671149
- 批准年份:2016
- 资助金额:49.3 万元
- 项目类别:面上项目
相似海外基金
Improving the design and statistical analysis of cluster-randomized trials on tropical infectious diseases
改进热带传染病整群随机试验的设计和统计分析
- 批准号:
10570440 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Developing Statistical Tools and Visualization Methods for Understanding Heterogeneity in Distributed Networks: Applications to COVID-19 and Diabetes
开发统计工具和可视化方法来理解分布式网络中的异质性:在 COVID-19 和糖尿病中的应用
- 批准号:
468555 - 财政年份:2022
- 资助金额:
$ 37.5万 - 项目类别:
Operating Grants
Developing TranStat: A user-friendly R package for the analysis of infectious disease transmission and control among close contacts
开发 TranStat:一个用户友好的 R 包,用于分析密切接触者之间的传染病传播和控制
- 批准号:
10703508 - 财政年份:2022
- 资助金额:
$ 37.5万 - 项目类别:
Developing TranStat: A user-friendly R package for the analysis of infectious disease transmission and control among close contacts
开发 TranStat:一个用户友好的 R 包,用于分析密切接触者之间的传染病传播和控制
- 批准号:
10576467 - 财政年份:2022
- 资助金额:
$ 37.5万 - 项目类别:
Developing a Novel Decision Aid for Tracheostomy to Support Shared Decision- Making in the Intensive Care Unit
开发新型气管造口决策辅助工具,支持重症监护病房的共同决策
- 批准号:
10212444 - 财政年份:2021
- 资助金额:
$ 37.5万 - 项目类别: