Collaborative Research: Wavelength-Scalable, Room-Temperature Mid-Infrared Photodetectors Based on Multiphoton-Assisted Tunneling

合作研究:基于多光子辅助隧道的波长可扩展、室温中红外光电探测器

基本信息

  • 批准号:
    2210977
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-15 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Title: Collaborative Research: Wavelength-Scalable, Room-Temperature Mid-Infrared Photodetectors Based on Multiphoton-Assisted TunnelingDetection of mid-infrared (MIR) electromagnetic radiation is of central importance in both fundamental sciences and applied technologies. It finds widespread applications ranging from free-space communication, night vision, nondestructive testing, environmental monitoring, medical diagnostics, spectroscopy, and astronomy research, to the sensitive detection of biomolecular and chemical signals. However, current MIR photodetectors based on narrow-bandgap semiconductors typically suffer from several inherent drawbacks, such as slow response time, high cost, low sensitivity, and most critically, the need for cryogenic cooling that practically prohibits them from portable applications. This collaborative research aims to study a new MIR detection mechanism based on a quantum mechanical phenomenon referred to as multiphoton-assisted tunneling in nanoscale metal–insulator–metal structures toward the development of new plasmo-electronic MIR detectors, which enable ultrafast, efficient, cooling-free, and wavelength-scalable photodetection. This interdisciplinary research interfacing quantum mechanics, photonics, electromagnetics, nanotechnologies, and nanomaterials will provide graduate, undergraduate, and K-12 students with unique multidisciplinary research experiences. The project tightly integrates research, education and community outreach efforts through a series of activities, such as Women in Engineering Program and Early Research Scholars Program, to increase the representation of women and underrepresented minorities in the STEM fields.This collaborative research aims to develop fundamentally new plasmo-electronic nanodevices, which can enrich the functional portfolio of plasmonics in the quantum domain and can lead to ultrafast, highly-efficient, room-temperature, and wavelength-scalable mid-infrared (MIR) photodetectors. We will use innovative nanophotonic and nanomaterial techniques to significantly improve the photon-to-electron conversion efficiency of the multiphoton-assisted tunneling (MPAT) processes occurring in metal–insulator–metal (MIM) plasmonic heterostructures. We will first theoretically model, experimentally characterize, and fully elucidate the optical rectification effect associated with MPAT in the MIR and long-wavelength regimes. Then, we will introduce (1) novel optical nanoantennas and MIM-based optical metasurfaces to enhance the coupling efficiency and localization of light into the MIM tunneling nanojunction, and (2) a new class of two-dimensional (2D) transition metal oxides (TMO) serving as controllable, ultrahigh-quality atomic-scale tunnel barriers. The strong optical nonlinearities induced by tunneling plasmons and the plasmonically-enhanced field localization in these plasmo-electronic MIR photodetectors, consisting of optical nanoantenna or metasurface structures loaded with the 2D TMO tunnel barrier, may enable the state-of-the-art photoconversion quantum yields. The knowledge gained from this research will help establish a new paradigm for detecting and harvesting infrared radiation using plasmonic devices operated in the nonlinear quantum regime, and will shed light on other plasmonically-enhanced MPAT processes, such as high harmonic generation, nonlinear wave mixing, and two-photon absorption, in the infrared regime.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
标题:合作研究:基于多光子辅助隧道的波长可扩展的室温中红外光电探测器中红外(MIR)电磁辐射的检测在基础科学和应用技术中都具有至关重要的作用。 -空间通信、夜视、无损检测、环境监测、医疗诊断、光谱学和天文学研究,到生物分子的灵敏检测然而,当前基于窄带隙半导体的中红外光电探测器通常存在一些固有的缺点,例如响应时间慢、成本高、灵敏度低,最关键的是,需要低温冷却,这实际上阻碍了它们的便携式应用。这项合作研究旨在研究一种基于纳米级金属-绝缘体-金属结构中的多光子辅助隧道效应的量子力学现象的新中红外检测机制,以开发新型等离子电子中红外探测器。这一跨学科研究将量子力学、光子学、电磁学、纳米技术和纳米材料结合在一起,将为研究生、本科生和 K-12 学生提供独特的多学科研究经验。通过一系列活动,例如女性工程项目和早期研究学者项目,在研究、教育和社区外展方面做出努力,以增加女性和代表性不足的少数群体在 STEM 领域的代表性。这项合作研究旨在开发全新的等离子电子纳米器件,可以丰富量子域中等离激元的功能组合,并可以产生超快、高效、室温和波长可扩展的中红外(MIR)光电探测器。纳米光子和纳米材料技术显着提高金属-绝缘体-金属(MIM)等离子体中发生的多光子辅助隧道(MPAT)过程的光子到电子转换效率我们将首先对 MIR 和长波长区域中与 MPAT 相关的光学整流效应进行理论建模、实验表征和充分阐明,然后,我们将介绍 (1) 新型光学纳米天线和基于 MIM 的光学超表面。耦合效率和光定位到 MIM 隧道纳米结中,以及 (2) 一类新型二维 (2D) 过渡金属氧化物 (TMO),作为可控、超高质量原子级隧道势垒。由隧道等离激元引起的强光学非线性和这些等离子电子 MIR 光电探测器(由装载有 2D TMO 隧道势垒的光学纳米天线或超表面结构组成)可以实现从这项研究中获得的知识将有助于建立一种使用等离子体设备检测和收集红外辐射的新范例。在非线性量子领域,并将揭示其他等离子体增强 MPAT 过程,如红外领域的高谐波产生、非线性波混合和双光子吸收。该奖项反映了 NSF 的法定使命,并被认为是值得的通过使用基金会的智力优势和更广泛的影响审查标准进行评估来获得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reconfigurable superdirective beamshaping using a PTX-synthesis metasurface
使用 PTX 合成超表面的可重构超定向光束整形
  • DOI:
    10.1364/ome.482661
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Ha, Trung Dung;Sun, Chia;Farhat, Mohamed;Chen, Pai
  • 通讯作者:
    Chen, Pai
Emulating the Deutsch-Josza algorithm with an inverse-designed terahertz gradient-index lens
使用逆向设计的太赫兹梯度折射率透镜模拟 Deutsch-Josza 算法
  • DOI:
    10.1364/oe.495919
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Blackwell, Ashley N.;Yahiaoui, Riad;Chen, Yi;Chen, Pai;Searles, Thomas A.;Chase, Zizwe A.
  • 通讯作者:
    Chase, Zizwe A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pai-Yen Chen其他文献

Pai-Yen Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pai-Yen Chen', 18)}}的其他基金

Electromagnetic Physically-Unclonable Functions Generated by Graphene Radio-Frequency Circuits
石墨烯射频电路产生的电磁物理不可克隆功能
  • 批准号:
    2229659
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Electromagnetic Physically-Unclonable Functions Generated by Graphene Radio-Frequency Circuits
石墨烯射频电路产生的电磁物理不可克隆功能
  • 批准号:
    2229659
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
I-Corps: Accurate, Contiguous and Portable Wireless Intraocular Contact Lens Pressure Sensors
I-Corps:准确、连续、便携式无线眼内隐形眼镜压力传感器
  • 批准号:
    2001328
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Parity-Time Symmetric Wireless Telemetry Systems for Implantable Microsensors
用于植入式微传感器的奇偶时间对称无线遥测系统
  • 批准号:
    1917678
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Integrated Research and Education on Self-Activated, Transparent Harmonics-Based Wireless Sensing Systems Using Graphene Bioelectronics
职业:利用石墨烯生物电子学对自激活、透明谐波无线传感系统进行综合研究和教育
  • 批准号:
    1752123
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Integrated Research and Education on Self-Activated, Transparent Harmonics-Based Wireless Sensing Systems Using Graphene Bioelectronics
职业:利用石墨烯生物电子学对自激活、透明谐波无线传感系统进行综合研究和教育
  • 批准号:
    1914420
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Parity-Time Symmetric Wireless Telemetry Systems for Implantable Microsensors
用于植入式微传感器的奇偶时间对称无线遥测系统
  • 批准号:
    1711409
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

芯片级原子钟用高效率双功能准三维亚波长结构器件研究
  • 批准号:
    62305252
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于双波长偏振全息的高功率光纤器件折射率超显微三维检测技术研究
  • 批准号:
    62305191
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于空间高频波的远场深亚波长光场调控研究
  • 批准号:
    12374306
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于电荷存储效应的高性能短波长宽光谱氧化镓探测器研究
  • 批准号:
    62304215
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于少模光纤布拉格光栅的波长、轨道角动量模式阶数可调全光纤涡旋激光器的研究
  • 批准号:
    62305310
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: A Data-Driven Approach to the Multi-Wavelength Circumgalactic Revolution
协作研究:数据驱动的多波长环银河系革命方法
  • 批准号:
    2206055
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: A Data-Driven Approach to the Multi-Wavelength Circumgalactic Revolution
协作研究:数据驱动的多波长环银河系革命方法
  • 批准号:
    2206055
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: A Data-Driven Approach to the Multi-Wavelength Circumgalactic Revolution
协作研究:数据驱动的多波长环银河系革命方法
  • 批准号:
    2206102
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: A Data-Driven Approach to the Multi-Wavelength Circumgalactic Revolution
协作研究:数据驱动的多波长环银河系革命方法
  • 批准号:
    2206102
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Wavelength-Scalable, Room-Temperature Mid-Infrared Photodetectors Based on Multiphoton-Assisted Tunneling
合作研究:基于多光子辅助隧道的波长可扩展、室温中红外光电探测器
  • 批准号:
    2210861
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了