Reconfigurable Neuromorphic Computing to enable Energy-Efficient Edge Intelligence

可重构神经形态计算实现节能边缘智能

基本信息

  • 批准号:
    2210804
  • 负责人:
  • 金额:
    $ 33.62万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

The goal of this project is to develop an energy-efficient and smart extreme edge device by taking inspiration from the human brain. Extreme edge devices can enable a variety of applications. Specifically, the devices can be used for remote tracking of rapid changes in the arctic, autonomous navigation of aerial and ground robots for deep space exploration, and monitoring and securing critical infrastructure. However, the current technology requires remotely sensed data to be processed in the cloud. This framework has several drawbacks, such as the delay between sensing and decision, shorter battery life due to high power consumption, and privacy concerns related to data transfer. The hardware developed as part of this proposal will seek to address the previously noted challenges and will advance the state-of-the-art in extreme edge devices. Specifically, the grant will enable the development of a reconfigurable brain-inspired processor with the capacity to learn based on input data. The hardware developed as part of this proposal will be used to train and motivate the next generation of students in the areas of microelectronics. Further, the hardware developed will use open-source computer aided design tools to enable broader dissemination of the developed technology. The study proposes to develop a reconfigurable mixed-signal neuromorphic hardware for processing data at the extreme edge. This proposal aims to increase the energy efficiency of neuromorphic hardware by employing mixed-signal circuits to model the neurons and synapses. Further, we propose to incorporate programmable mixed-signal circuit topologies and explore techniques to co-optimize the hardware and software models to learn and adapt the network parameters in the presence of mismatch and variations. In addition, the proposal will also explore circuit topologies to perform learning on-chip. Based on these individual elements, the proposal will investigate a system architecture to develop reconfigurable hardware that can compile a spiking neural network with the capability to learn on-chip for performing extreme edge tasks. The extreme edge task we plan to validate the developed hardware is object detection using openly available datasets and a quadcopter with a limited battery capacity to perform object detection. The proposal will address the knowledge gaps in designing a learning algorithm for a mixed-signal spiking neural network with variation and mismatch, circuit topologies and system architecture for performing on-chip learning with limited resources, and advance the state-of-the-art in energy-efficient neuromorphic hardware.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的目标是从人脑中汲取灵感,开发一种节能且智能的极限边缘设备。极端边缘设备可以实现多种应用。具体来说,这些设备可用于远程跟踪北极的快速变化、用于深空探索的空中和地面机器人的自主导航,以及监控和保护关键基础设施。然而,当前的技术需要在云端处理遥感数据。该框架有几个缺点,例如感测和决策之间的延迟、高功耗导致的电池寿命较短以及与数据传输相关的隐私问题。作为该提案的一部分开发的硬件将寻求解决之前提到的挑战,并将推进极端边缘设备的最先进技术。具体来说,这笔赠款将有助于开发可重构的类脑处理器,该处理器具有基于输入数据进行学习的能力。 作为该提案的一部分开发的硬件将用于培训和激励微电子领域的下一代学生。此外,开发的硬件将使用开源计算机辅助设计工具,以便更广泛地传播所开发的技术。 该研究建议开发一种可重构的混合信号神经形态硬件,用于处理极端边缘的数据。该提案旨在通过采用混合信号电路对神经元和突触进行建模来提高神经形态硬件的能源效率。此外,我们建议结合可编程混合信号电路拓扑,并探索共同优化硬件和软件模型的技术,以在存在不匹配和变化的情况下学习和调整网络参数。此外,该提案还将探索电路拓扑以进行片上学习。基于这些单独的元素,该提案将研究一种系统架构,以开发可重新配置的硬件,该硬件可以编译具有片上学习能力以执行极端边缘任务的尖峰神经网络。我们计划验证开发的硬件的极端边缘任务是使用公开可用的数据集和电池容量有限的四轴飞行器来执行物体检测的物体检测。该提案将解决在设计具有变化和不匹配的混合信号尖峰神经网络的学习算法、电路拓扑和系统架构方面的知识差距,以在有限的资源下执行片上学习,并推进最先进的技术该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sahil Shah其他文献

Improving interface quality for 1-cm^2 all-perovskite tandem solar cells
提高 1-cm^2 全钙钛矿串联太阳能电池的界面质量
  • DOI:
    10.1038/s41586-023-05992-y
  • 发表时间:
    2023-03-29
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    Rui He;Wanhai Wang;Zongjin Yi;F. Lang;Cong Chen;Jincheng Luo;Jingwei Zhu;Jarla Thiesbrummel;Sahil Shah;Kun Wei;Yi Luo;Changlei Wang;Huagui Lai;Hao Huang;Jie Zhou;B. Zou;Xinxing Yin;S. Ren;X. Hao;Lili Wu;Jingquan Zhang;Jinbao Zhang;M. Stolterfoht;F. Fu;Weihua Tang;De
  • 通讯作者:
    De
Cryogenic Behaviors of 65nm Transistor: On-State IV and Parameters
65nm 晶体管的低温行为:通态 IV 和参数
Design Space Exploration Tool for Mixed-Signal Spiking Neural Network
混合信号尖峰神经网络的设计空间探索工具
A case report of usage of luminex 500 in treatment of stump neuroma
luminex 500治疗残肢神经瘤一例报告
MCMV Dissemination from Latently-Infected Allografts Following Transplantation into Pre-Tolerized Recipients
移植到预耐受受体后潜伏感染的同种异体移植物中的 MCMV 传播
  • DOI:
    10.3390/pathogens9080607
  • 发表时间:
    2020-07-26
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Sahil Shah;Matthew DeBerge;Andre Iovane;Shixian Yan;Longhui Qiu;Jiao;Y. Kanwar;M. Hummel;Z. Zhang;M. Abecassis;Xunrong Luo;E. Thorp
  • 通讯作者:
    E. Thorp

Sahil Shah的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sahil Shah', 18)}}的其他基金

CAREER: Exploring Mixed-Signal Computation for Energy-Efficient and Robust Brain-Machine Interfaces
职业:探索节能且鲁棒的脑机接口的混合信号计算
  • 批准号:
    2338159
  • 财政年份:
    2024
  • 资助金额:
    $ 33.62万
  • 项目类别:
    Continuing Grant
Travel: NSF-CISE Student Participation Grant for MWSCAS 2023
旅行: MWSCAS 2023 NSF-CISE 学生参与补助金
  • 批准号:
    2326667
  • 财政年份:
    2023
  • 资助金额:
    $ 33.62万
  • 项目类别:
    Standard Grant
Collaborative Research: CMOS+X: 3D integration of CMOS spiking neurons with AlBN/GaN-based Ferroelectric HEMT towards artificial somatosensory system
合作研究:CMOS X:CMOS 尖峰神经元与 AlBN/GaN 基铁电 HEMT 的 3D 集成,用于人工体感系统
  • 批准号:
    2324781
  • 财政年份:
    2023
  • 资助金额:
    $ 33.62万
  • 项目类别:
    Standard Grant
Travel: NSF-CISE Student Participation Grant for MWSCAS 2023
旅行: MWSCAS 2023 NSF-CISE 学生参与补助金
  • 批准号:
    2326667
  • 财政年份:
    2023
  • 资助金额:
    $ 33.62万
  • 项目类别:
    Standard Grant

相似国自然基金

面向开放场景类脑具身智能的大规模数字神经形态计算研究
  • 批准号:
    62376185
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
斯格明子的随机动力学及其神经形态计算应用器件基础研究
  • 批准号:
    12304160
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
金属卤化物基柔性全光调控突触晶体管及其神经形态计算应用研究
  • 批准号:
    62304021
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向高性能神经形态计算的功能化大豆蛋白基生物忆阻器及其光电神经突触可塑性研究
  • 批准号:
    62371183
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
自旋轨道矩驱动的人工反铁磁畴壁运动及其在神经形态计算器件的应用
  • 批准号:
    12334006
  • 批准年份:
    2023
  • 资助金额:
    239 万元
  • 项目类别:
    重点项目

相似海外基金

CAREER: Heterogeneous Neuromorphic and Edge Computing Systems for Realtime Machine Learning Technologies
职业:用于实时机器学习技术的异构神经形态和边缘计算系统
  • 批准号:
    2340249
  • 财政年份:
    2024
  • 资助金额:
    $ 33.62万
  • 项目类别:
    Continuing Grant
SPX: Collaborative Research: Scalable Neural Network Paradigms to Address Variability in Emerging Device based Platforms for Large Scale Neuromorphic Computing
SPX:协作研究:可扩展神经网络范式,以解决基于新兴设备的大规模神经形态计算平台的可变性
  • 批准号:
    2401544
  • 财政年份:
    2023
  • 资助金额:
    $ 33.62万
  • 项目类别:
    Standard Grant
CAREER: Entropy Oxide Memristors for Software-equivalent Neuromorphic Computing
职业:用于软件等效神经形态计算的熵氧化物忆阻器
  • 批准号:
    2239951
  • 财政年份:
    2023
  • 资助金额:
    $ 33.62万
  • 项目类别:
    Continuing Grant
Integrated Event-Based SoC: Revolutionizing Sensor and AI Processor Performance with Low-Latency, Energy-Efficient Neuromorphic Computing
基于事件的集成 SoC:通过低延迟、节能的神经拟态计算彻底改变传感器和 AI 处理器的性能
  • 批准号:
    10072308
  • 财政年份:
    2023
  • 资助金额:
    $ 33.62万
  • 项目类别:
    Grant for R&D
Novel brain-inspired and neuromorphic photonic computing
新颖的受大脑启发的神经形态光子计算
  • 批准号:
    2733978
  • 财政年份:
    2023
  • 资助金额:
    $ 33.62万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了