Collaborative Research: SaTC: CORE: Small: Targeting Challenges in Computational Disinformation Research to Enhance Attribution, Detection, and Explanation
协作研究:SaTC:核心:小型:针对计算虚假信息研究中的挑战以增强归因、检测和解释
基本信息
- 批准号:2241069
- 负责人:
- 金额:$ 15.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-01 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The use of social media has accelerated information sharing and instantaneous communications. The low barrier to entering social media enables more users to participate and keeps them engaged longer, incentivizing individuals with a hidden agenda to spread disinformation online to manipulate information and sway opinion. Disinformation, such as fake news, hoaxes, and conspiracy theories, has increasingly become a hindrance to the functioning of online social media as an effective channel for trustworthy information. Cases are emerging where deliberately fabricated disinformation is weaponized to divide people and create detrimental societal effects. Therefore, it is imperative to understand disinformation and systematically investigate how to improve resistance against it, considering the tension between the need for information and security and protection from disinformation. The project aims to study the scientific underpinnings of disinformation and develop a computational framework to attribute, detect, and explain disinformation to inform policymaking. The project involves fundamentally transforming the process to combat disinformation by developing new knowledge and a systematic computational framework to address major (provenance, data, and explanaibility) challenges of detecting online disinformation. The techniques developed combine interdisciplinary theories and computational algorithms to help policymakers and social media users address disinformation. The project outcomes help advance state-of-the-art research on disinformation and introduce style-based and graph-based optimization methods that can determine the source of disinformation and its characteristics, disinformation detection methods requiring minimal data or supervision by harnessing multimodal data and high-level social context relations, and interpretable detection techniques that rely on well-established psychological and cognitive theories, and enable human interactions to enhance detection and explanation. More broadly, the project contributes to data mining, machine learning, graph mining, and text mining research as well social science research in communication and journalism on credibility, transparency, and disinformation mitigation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
社交媒体的使用加速了信息共享和瞬时通信。进入社交媒体的低障碍使更多的用户能够参与并使他们参与更长的时间,激励具有隐藏议程的个人在线传播虚假信息,以操纵信息和摇摆意见。虚假信息,例如虚假新闻,骗局和阴谋论,越来越多地成为对在线社交媒体的运作的障碍,作为可信赖信息的有效渠道。案件正在出现,故意捏造的虚假信息被武器化以划分人并产生有害的社会影响。因此,考虑到信息,安全性和免受虚假信息的保护之间的张力,必须了解虚假信息并系统地研究如何提高对它的抵抗力。该项目旨在研究虚假信息的科学基础,并开发一个计算框架来归因,检测和解释虚假信息以告知决策。该项目涉及通过开发新知识和系统的计算框架来解决问题以应对检测在线虚假信息的主要(出处,数据和解释性)挑战,从而从根本上转变这一过程以打击虚假信息。 这些技术开发了跨学科理论和计算算法,以帮助决策者和社交媒体用户解决虚假信息。该项目结果有助于提高有关虚假信息的最新研究,并介绍基于样式的和基于图形的优化方法,这些方法可以确定虚假信息及其特征的来源,通过利用多模式数据来利用最小数据或监督的虚假信息检测方法高级社会背景关系以及依赖于良好的心理和认知理论的可解释的检测技术,并使人的互动能够增强检测和解释。更广泛地说,该项目有助于数据挖掘,机器学习,图形挖掘和文本挖掘研究,以及有关信誉,透明度和减轻虚假信息的沟通和新闻业的社会科学研究。该奖项反映了NSF的法定任务,并被认为是值得的。通过基金会的智力优点和更广泛的影响评估标准通过评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Miriam Metzger其他文献
Miriam Metzger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Miriam Metzger', 18)}}的其他基金
Collaborative Research: SaTC: CORE: Medium: Methods and Tools for Effective, Auditable, and Interpretable Online Ad Transparency
协作研究:SaTC:核心:媒介:有效、可审核和可解释的在线广告透明度的方法和工具
- 批准号:
2151340 - 财政年份:2022
- 资助金额:
$ 15.6万 - 项目类别:
Standard Grant
相似国自然基金
离子型稀土渗流-应力-化学耦合作用机理与溶浸开采优化研究
- 批准号:52364012
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
亲环蛋白调控作物与蚜虫互作分子机制的研究
- 批准号:32301770
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于金属-多酚网络衍生多相吸波体的界面调控及电磁响应机制研究
- 批准号:52302362
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
职场网络闲逛行为的作用结果及其反馈效应——基于行为者和观察者视角的整合研究
- 批准号:72302108
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
EIF6负调控Dicer活性促进EV71复制的分子机制研究
- 批准号:32300133
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 15.6万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330940 - 财政年份:2024
- 资助金额:
$ 15.6万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338301 - 财政年份:2024
- 资助金额:
$ 15.6万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317233 - 财政年份:2024
- 资助金额:
$ 15.6万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338302 - 财政年份:2024
- 资助金额:
$ 15.6万 - 项目类别:
Continuing Grant