Collaborative Research: Fast and efficient phase-change photonics using low-dimensional materials
合作研究:使用低维材料的快速高效的相变光子学
基本信息
- 批准号:2210168
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project aims to demonstrate an active optical device that simultaneously exploits the unique properties of phase-change and two-dimensional materials. Active optical devices are currently achieved with platforms that require a constant power supply, which is energy inefficient in optical applications with sporadic modulation, such as light-based data storage. The reversible yet stable optical response of phase-change materials has been explored as a solution to this problem, given that their stable states allow for zero-static power operation. These properties and their nanofabrication versatility have resulted in unprecedented device performances in applications ranging from imaging to on-chip optical computing. However, such applications rely on phase-change materials optimized for the near-infrared spectrum (where telecommunications take place). In contrast, several other classical and quantum technologies would benefit from modulation closer to the visible spectrum. This project aims to fill this gap by developing novel phase-change material and their control mechanism, microheaters, that are transparent in the visible and compatible with any substrate. To create the microheater, this project will explore the unique properties of two-dimensional materials such as graphene, which is transparent and allows for fast heating and cooling speeds. This project’s fast and efficient platform based on phase-change and two-dimensional materials will be broadly applicable to technologies such as metasurfaces, optical filters, novel computing architectures, and reconfigurable (quantum) photonics. This project aims to explore the use of microheaters composed of low-dimensional materials as a method for high-speed and efficient control of low-loss reconfigurable phase-change photonic devices for platforms beyond silicon. Phase-change materials, such as Ge2Sb2Te5, Sb2Se3, etc., are particularly promising for reconfigurable optical devices owing to their fast, dramatic, non-volatile, and reversible change in refractive index. Experimental demonstrations of reconfigurable smart windows, metasurfaces, and photonic devices for memory and computing have reignited interest in these alloys. However, work exploring electrical control over optical phase-change devices has been limited to optically opaque platforms for wavelengths 1.2µm, not compatible with photonic platforms beyond silicon, and have slow heating and cooling rates which limit their switching speed and energy efficiency. Therefore, to fill these critical needs, this project aims to 1) develop new solutions for controlling phase-change materials using a substrate-agnostic platform with ultrafast 2D microheaters, 2) improve the optical transparency, speed, and endurance by developing new phase-change alloys and systematically studying their failure mechanisms, and 3) demonstrate efficient and reliable waveguide integration. The project outcomes will have immediate relevance in the fast-growing field of nonvolatile photonics, including free-space applications such as metasurfaces and optical filters and photonic integrated circuits for telecom, neuromorphic computing, and quantum processing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在展示一种同时利用相变和二维材料独特特性的有源光学器件。目前,有源光学器件是通过需要恒定电源的平台实现的,这在零星调制的光学应用中能源效率低下。 ,例如基于光的数据存储,人们已经探索了相变材料的可逆但稳定的光学响应作为该问题的解决方案,因为它们的稳定状态允许零静态功率操作。带来了前所未有的设备性能然而,此类应用依赖于针对近红外光谱(电信发生的地方)进行优化的相变材料,相比之下,其他几种经典和量子技术将受益于更近的调制。该项目旨在通过开发新型相变材料及其控制机制(微型加热器)来填补这一空白,该材料在可见光中透明且与任何基材兼容。为了制造微型加热器,该项目将探索其独特的性能。二维材料,例如石墨烯是透明的,可实现快速加热和冷却,该项目基于相变和二维材料的快速高效平台将广泛适用于超表面、光学滤波器、新型计算架构和可重构(该项目旨在探索使用由低维材料组成的微加热器作为硅以外平台的低损耗可重构相变光子器件的高速、高效控制方法。 Ge2Sb2Te5、Sb2Se3 等材料由于其折射率的快速、显着、非易失性和可逆变化,在可重构光学器件方面特别有前景。可重构智能窗口、超表面和用于存储的光子器件的实验演示。然而,探索光学相变器件的电控制的工作仅限于光学不透明的波长平台。 1.2μm,与硅以外的光子平台不兼容,并且加热和冷却速率慢,限制了它们的开关速度和能源效率。因此,为了满足这些关键需求,该项目旨在 1) 开发用于控制相变材料的新解决方案。使用具有超快 2D 微型加热器的基板无关平台,2)通过新型相变合金提高光学透明度、速度和耐久性,并系统地研究其失效机制,3)展示高效可靠的波导集成。有快速发展的非易失性光子学领域的相关性,包括自由空间应用,例如超表面和光学滤波器以及用于电信、神经形态计算和量子处理的光子集成电路。该奖项反映了 NSF 的法定使命,并被认为值得通过以下方式获得支持:使用基金会的智力价值和更广泛的影响审查标准进行评估。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tunable structural transmissive color in fano-resonant optical coatings employing phase-change materials
采用相变材料的法诺共振光学涂层中的可调节结构透射颜色
- DOI:10.1016/j.mtadv.2023.100364
- 发表时间:2023-02-07
- 期刊:
- 影响因子:10
- 作者:Yi;C. Lee;Medha Rath;V. Ferrari;Heshan Yu;T. Woehl;J. Ni;I. Takeuchi;Carlos R'ios
- 通讯作者:Carlos R'ios
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carlos Rios Ocampo其他文献
Carlos Rios Ocampo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carlos Rios Ocampo', 18)}}的其他基金
Collaborative Research: FuSe: High-throughput Discovery of Phase Change Materials for Co-designed Electronic and Optical Computational Devices (PHACEO)
合作研究:FuSe:用于共同设计的电子和光学计算设备的相变材料的高通量发现(PHACEO)
- 批准号:
2329087 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: High-throughput Discovery of Phase Change Materials for Co-designed Electronic and Optical Computational Devices (PHACEO)
合作研究:FuSe:用于共同设计的电子和光学计算设备的相变材料的高通量发现(PHACEO)
- 批准号:
2329087 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
相似国自然基金
基于FAST观测的重复快速射电暴的统计和演化研究
- 批准号:12303042
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于神经网络的FAST馈源融合测量算法研究
- 批准号:12363010
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
基于FAST的射电脉冲星搜索和候选识别的深度学习方法研究
- 批准号:12373107
- 批准年份:2023
- 资助金额:54 万元
- 项目类别:面上项目
基于FAST和SKA先导阵搜索高银纬脉冲星并研究其垂直银盘分布
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于FAST望远镜对仙女座星系中高速云的研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
- 批准号:
2402284 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
- 批准号:
2402283 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research: Breaking the 1D barrier in radiative transfer: Fast, low-memory numerical methods for enabling inverse problems and machine learning emulators
合作研究:打破辐射传输中的一维障碍:用于实现逆问题和机器学习模拟器的快速、低内存数值方法
- 批准号:
2324369 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Disentangling runoff- and Terminus-driven Velocity Variations of Fast Flowing Outlet Glaciers
合作研究:解开快速流动的出口冰川径流和终点驱动的速度变化
- 批准号:
2234731 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Integrated Experiments and Modeling for Spatial, Finite, and Fast Rheometry of Graded Hydrogels using Inertial Cavitation
合作研究:利用惯性空化对梯度水凝胶进行空间、有限和快速流变测量的综合实验和建模
- 批准号:
2232427 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant