Advancing Graph Signal Processing Techniques for Monitoring and Control of Electric Distribution Power Systems
先进的图形信号处理技术用于配电电力系统的监测和控制
基本信息
- 批准号:2210012
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This NSF project aims to incorporate the physical modeling of the electric grid in the theory of machine learning algorithms, to benefit the monitoring and control of energy delivery systems. While the basic theory we will develop applies broadly to transmission and distribution systems, the section of the grid we are focusing on is the one that is undergoing the greatest transformation, which is the distribution grid. This section of the system not only poses unique modeling challenges, it is also undergoing significant changes because of the integration of distributed energy resources and the control of responsive demand and storage. These are the key ingredients to sustainable energy delivery, and the project will bring transformative changes to the digital technology and machine intelligence that can accelerate this transition. More specifically, the proposal explores a novel mathematical approach for the analysis of grid signals, rooted in fundamental power systems graph-based methods and born out of interpreting the system state as an instance of graph signals. The goal is to use the insights that come from Graph Signal Processing (GSP) and from graph Fourier analysis, to extract signals features that allow to improve data driven inference and decision algorithms. At this time, GSP machine learning tools are designed for real signals and are not physics based. The project will fill this gap, by providing the underpinning for a theory of grid graph signals. This entails extending the GSP tools to tackle complex signals, incorporating the grid system parameters in the algorithm and considering realistic power measurements systems. The goal is to have a better representation of the spatial-temporal characteristics of the data as compared to generic machine learning algorithms and advance the theoretical tools in GSP which are not based on systems whose properties are captures by the signals envelopes and on the physics of the grid. The tools developed will be made available open source. In addition to the advances in GSP, the project will have broader impact through its outreach to New York City public schools and create a short program for K-12 students, supported by an illustrated book, explaining how energy is delivered and the path that advanced societies need to follow to achieve the goal of a decarbonized economy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该 NSF 项目旨在将电网的物理建模纳入机器学习算法理论中,以利于能源输送系统的监测和控制。虽然我们将开发的基本理论广泛适用于输电和配电系统,但我们关注的电网部分是正在经历最大变革的部分,即配电网。系统的这一部分不仅提出了独特的建模挑战,而且由于分布式能源的整合以及响应需求和存储的控制,它也正在发生重大变化。这些是可持续能源输送的关键要素,该项目将为数字技术和机器智能带来变革,从而加速这一转变。 更具体地说,该提案探索了一种用于分析电网信号的新颖数学方法,该方法植根于基本电力系统基于图的方法,并将系统状态解释为图信号的实例。目标是利用来自图信号处理 (GSP) 和图傅里叶分析的见解来提取信号特征,从而改进数据驱动的推理和决策算法。目前,GSP 机器学习工具是为真实信号设计的,而不是基于物理的。该项目将通过为网格图信号理论提供基础来填补这一空白。这需要扩展 GSP 工具来处理复杂信号,将电网系统参数纳入算法并考虑实际的功率测量系统。目标是与通用机器学习算法相比,更好地表示数据的时空特征,并改进 GSP 中的理论工具,这些工具不基于其属性由信号包络捕获的系统,也不基于以下物理特性:网格。开发的工具将开源。除了 GSP 方面的进步外,该项目还将通过向纽约市公立学校推广并为 K-12 学生创建一个短期项目,并附有一本插图书,解释能源如何输送以及推进的路径,从而产生更广泛的影响。社会需要遵循以实现脱碳经济的目标。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reinforcement Learning using Physics Inspired Graph Convolutional Neural Networks
使用物理启发的图卷积神经网络进行强化学习
- DOI:10.1109/allerton49937.2022.9929321
- 发表时间:2022-09-27
- 期刊:
- 影响因子:0
- 作者:Tong Wu;A. Scaglione;D. Arnold
- 通讯作者:D. Arnold
Spatio-Temporal Graph Convolutional Neural Networks for Physics-Aware Grid Learning Algorithms
用于物理感知网格学习算法的时空图卷积神经网络
- DOI:10.1109/tsg.2023.3239740
- 发表时间:2022-03-31
- 期刊:
- 影响因子:9.6
- 作者:Tong Wu;Ignacio Losada Carreño;A. Scaglione;D. Arnold
- 通讯作者:D. Arnold
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anna Scaglione其他文献
Localization of Data Injection Attacks on Distributed M-Estimation
对分布式 M 估计的数据注入攻击的本地化
- DOI:
10.1109/dsw.2019.8755572 - 发表时间:
2019-06-01 - 期刊:
- 影响因子:0
- 作者:
O. Shalom;Amir Leshem;Anna Scaglione - 通讯作者:
Anna Scaglione
Stochastic Dynamic Network Utility Maximization with Application to Disaster Response
随机动态网络效用最大化及其在灾难响应中的应用
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Anna Scaglione;Nurullah Karakoç - 通讯作者:
Nurullah Karakoç
Optimal adaptive precoding for frequency-selective Nagakami-m fading channels
频率选择性 Nagakami-m 衰落信道的最优自适应预编码
- DOI:
10.1109/vetecf.2000.886308 - 发表时间:
2000-09-24 - 期刊:
- 影响因子:0
- 作者:
Anna Scaglione;S. Barbarossa;G. Giannakis - 通讯作者:
G. Giannakis
Network-Constrained Reinforcement Learning for Optimal EV Charging Control
用于最佳电动汽车充电控制的网络约束强化学习
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Tong Wu;Anna Scaglione;Adrian;Daniel Arnold;S. Peisert - 通讯作者:
S. Peisert
Blind equalization using cost function matched to the signal constellation
使用与信号星座匹配的成本函数进行盲均衡
- DOI:
10.1109/acssc.1997.680438 - 发表时间:
1997-11-02 - 期刊:
- 影响因子:0
- 作者:
S. Barbarossa;Anna Scaglione - 通讯作者:
Anna Scaglione
Anna Scaglione的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anna Scaglione', 18)}}的其他基金
Travel Grant: Urban Tech Academy meeting on electrified multimodal transportation
旅行补助金:城市技术学院关于电气化多式联运的会议
- 批准号:
2336001 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
I-Corps: Geospatial Trend Detection for Hydro-power and Critical Infrastructure Design
I-Corps:水电和关键基础设施设计的地理空间趋势检测
- 批准号:
2344120 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
CCF-BSF: CIF: Small: Identification and Isolation of Malicious Behavior in Multi-Agent Optimization Algorithms
CCF-BSF:CIF:小:多代理优化算法中恶意行为的识别和隔离
- 批准号:
1714672 - 财政年份:2017
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
EAGER: The Identification of Social Systems Trust: Theory and Experimental Validation
EAGER:社会系统信任的识别:理论与实验验证
- 批准号:
1553746 - 财政年份:2015
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Renewables: A function space theory for continuous-time flexibility scheduling in electricity markets
合作研究:EAGER:可再生能源:电力市场连续时间灵活性调度的函数空间理论
- 批准号:
1549923 - 财政年份:2015
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
CIF: Large: Collaborative Research: Cooperation and Learning Over Cognitive Networks
CIF:大型:协作研究:认知网络上的合作与学习
- 批准号:
1531050 - 财政年份:2014
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
CCF: Small: Online Learning and Exploitation of the Radio Frequency Spectrum with Sub-Nyquist Sampling
CCF:小型:采用亚奈奎斯特采样的射频频谱在线学习和利用
- 批准号:
1534957 - 财政年份:2014
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
CCF: Small: Online Learning and Exploitation of the Radio Frequency Spectrum with Sub-Nyquist Sampling
CCF:小型:采用亚奈奎斯特采样的射频频谱在线学习和利用
- 批准号:
1320065 - 财政年份:2013
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
CIF: Large: Collaborative Research: Cooperation and Learning Over Cognitive Networks
CIF:大型:协作研究:认知网络上的合作与学习
- 批准号:
1011811 - 财政年份:2010
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
NeTS: Medium: Collaborative Research: Unlocking Capacity for Wireless Access Networks through Robust Cooperative Cross-Layer Design
NetS:媒介:协作研究:通过稳健的协作跨层设计释放无线接入网络的容量
- 批准号:
0905267 - 财政年份:2009
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
相似国自然基金
基于图形基因组解析新疆甜瓜果实发育的分子遗传基础
- 批准号:32360749
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
图形晶圆深亚波长缺陷的多模式光学检测方法
- 批准号:52305584
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
斑图形成中的小分母问题
- 批准号:12371158
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
植被斑图形成机制的动力学模型研究及数据分析
- 批准号:12301639
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
自动图形化静电打印技术的材料转移及连接机理研究
- 批准号:52375321
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Accurate and Individualized Prediction of Excitation-Inhibition Imbalance in Alzheimer's Disease using Data-driven Neural Model
使用数据驱动的神经模型准确、个性化地预测阿尔茨海默病的兴奋抑制失衡
- 批准号:
10727356 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Evaluating the utility of cis-regulatory element graphs for modeling gene regulation
评估顺式调控元件图在基因调控建模中的效用
- 批准号:
10776793 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
A portable quantitative polymerase chain reaction platform (qPCR) for rapid detection of pathogens impacting model organisms in animal facilities
便携式定量聚合酶链反应平台 (qPCR),用于快速检测影响动物设施中模式生物的病原体
- 批准号:
10604150 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Graph Signal Processing and Graph Machine Learning
图信号处理和图机器学习
- 批准号:
2884089 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Studentship
Leveraging Spatial Location for Single-Cell Molecular and Morphological Characterization
利用空间定位进行单细胞分子和形态学表征
- 批准号:
10534272 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别: