Collaborative Research:CPS:Medium:SMAC-FIRE: Closed-Loop Sensing, Modeling and Communications for WildFIRE
合作研究:CPS:中:SMAC-FIRE:野火的闭环传感、建模和通信
基本信息
- 批准号:2209994
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Increases in temperatures and drought duration and intensity due to climate change, together with the expansion of wildlife-urban interfaces, has dramatically increased the frequency and intensity of forest fires, and has had devastating effects on lives, property, and the environment. To address this challenge, this project’s goal is to design a network of airborne drones and wireless sensors that can aid in initial wildfire localization and mapping, near-term prediction of fire progression, and providing communications support for firefighting personnel on the ground. Two key aspects differentiate the system from prior work: (1) It leverages and subsequently updates detailed three-dimensional models of the environment, including the effects of fuel type and moisture state, terrain, and atmospheric/wind conditions, in order to provide the most timely and accurate predictions of fire behavior possible, and (2) It adapts to hazardous and rapidly changing conditions, optimally balancing the need for wide-area coverage and maintaining communication links with personnel in remote locations. The science and engineering developed under this project can be adapted to many applications beyond wildfires including structural fires in urban and suburban settings, natural or man-made emergencies involving radiation or airborne chemical leaks, "dirty bombs" that release chemical or biological agents, or tracking highly localized atmospheric conditions surrounding imminent or on-going extreme weather events.The system developed under this project will enable more rapid localization and situational awareness of wildfires at their earliest stages, better predictions of both local, near-term and event-scale behavior, better situational awareness and coordination of personnel and resources, and increased safety for fire fighters on the ground. Models ranging from simple algebraic relationships based on wind velocity to more complex time-dependent coupled fluid dynamics-fire physics models will be used to anticipate fire behavior. These models are hampered by stochastic processes such as the lofting of burning embers to ignite new fires, that cause errors to grow rapidly with time. This project is focused on closing the loop using sensor data provided by airborne drones and ground-based sensors (GBS). The models inform the sensing by anticipating rapid growth of problematic phenomena, and the subsequent sensing updates the models, providing local wind and spot fire locations. Closing this loop as quickly as possible is critical to mitigating the fire’s impact. The system we propose integrates advanced fire modeling tools with mobile drones, wireless GBS, and high-level human interaction for both the initial attack of a wildfire event and subsequent on-going support.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
气候变化导致气温升高、干旱持续时间和强度增加,加上野生动物与城市接触面的扩大,大大增加了森林火灾的频率和强度,并对生命、财产和环境造成了破坏性影响。为了应对这一挑战,该项目的目标是设计一个由机载无人机和无线传感器组成的网络,帮助进行野火的初步定位和测绘、火灾进展的近期预测,并为地面消防人员提供通信支持,这两个关键方面有所不同。之前工作的系统: (1) 它利用并随后更新详细的环境三维模型,包括燃料类型和湿度状态、地形以及大气/风力条件的影响,以便尽可能提供最及时、最准确的火灾行为预测, (2) 它能够适应危险和快速变化的条件,最佳地平衡广域覆盖的需求和维持与偏远地区人员的通信联系。该项目开发的科学和工程可以适应野火以外的许多应用,包括结构性火灾。城市和郊区的火灾,自然或涉及辐射或空气中化学物质的人为紧急情况、释放化学或生物剂的“脏弹”,或围绕迫在眉睫或正在进行的极端天气事件的高度局部化的大气条件。该项目开发的系统将能够更快速地定位和泄漏对野火最早阶段的态势感知,更好地预测当地、近期和事件规模的行为,更好的态势感知以及人员和资源的协调,以及提高地面消防员的安全性。基于风速的更复杂的与时间相关的耦合流体动力学火灾物理模型将用于预测火灾行为,这些模型受到随机过程的阻碍,例如燃烧余烬的升起以点燃新的火灾,从而导致误差迅速增长。随着时间的推移,该项目的重点是使用机载无人机和地面传感器 (GBS) 提供的传感器数据来闭合循环,这些模型通过预测问题现象的快速增长来通知传感,随后的传感更新模型,提供本地信息。风和点尽快关闭这个循环对于减轻火灾的影响至关重要,我们提出的系统将先进的火灾建模工具与移动无人机、无线 GBS 和高级人机交互相结合,用于野火事件的初始攻击和控制。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Janice Coen其他文献
FLAME 2: FIRE DETECTION AND MODELING: AERIAL MULTI-SPECTRAL IMAGE DATASET
FLAME 2:火灾探测和建模:航空多光谱图像数据集
- DOI:
- 发表时间:
2023-01 - 期刊:
- 影响因子:0
- 作者:
Bryce Hopkins;Leo O'Neill, Fatemeh Afghah;Abolfazl Razi;Eric Rowell;Adam Watts;Peter Fule;Janice Coen - 通讯作者:
Janice Coen
FLAME 2: FIRE DETECTION AND MODELING: AERIAL MULTI-SPECTRAL IMAGE DATASET
FLAME 2:火灾探测和建模:航空多光谱图像数据集
- DOI:
- 发表时间:
2023-01 - 期刊:
- 影响因子:0
- 作者:
Bryce Hopkins;Leo O'Neill, Fatemeh Afghah;Abolfazl Razi;Eric Rowell;Adam Watts;Peter Fule;Janice Coen - 通讯作者:
Janice Coen
Wildland Fire Detection and Monitoring Using a Drone-Collected RGB/IR Image Dataset
使用无人机收集的 RGB/IR 图像数据集进行荒地火灾探测和监控
- DOI:
10.1109/access.2022.3222805 - 发表时间:
2024-09-14 - 期刊:
- 影响因子:3.9
- 作者:
Xiwen Chen;Bryce Hopkins;Hao Wang;Leo O’Neill;Fatemeh Afghah;A. Razi;Peter Fulé;Janice Coen;Eric Rowell;Adam Watts - 通讯作者:
Adam Watts
Janice Coen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Janice Coen', 18)}}的其他基金
Collaborative Research: CPS: Medium: Wildland Fire Observation, Management, and Evacuation using Intelligent Collaborative Flying and Ground Systems
协作研究:CPS:中:使用智能协作飞行和地面系统进行荒地火灾观测、管理和疏散
- 批准号:
2038759 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
EAGER-DynamicData: Transforming Wildfire Detection and Prediction using New and Underused Sensor and Data Sources Integrated with Modeling
EAGER-DynamicData:使用新的和未充分利用的传感器以及与建模集成的数据源来改变野火检测和预测
- 批准号:
1462247 - 财政年份:2015
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: CDI-Type II--The Open Wildland Fire Modeling E-community: A Virtual Organization Accelerating Research, Education, and Fire Management Technology
合作研究:CDI-Type II——开放荒地火灾建模电子社区:一个加速研究、教育和火灾管理技术的虚拟组织
- 批准号:
0835598 - 财政年份:2008
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
ITR/NGS: Collaborative Research: DDDAS: Data-Dynamic Simulation for Disaster Management
ITR/NGS:合作研究:DDDAS:灾害管理的数据动态模拟
- 批准号:
0324910 - 财政年份:2003
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
相似国自然基金
CPs/MOFs介导多烯衍生物拓扑光聚合的高立体选择性构建策略研究
- 批准号:22361004
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
尿素循环关键酶CPS1表达异常在肺癌转移中的作用和机制研究
- 批准号:82273390
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
GPER通过“barcode”磷酸化修饰调控β-arrestin/SH3-CPs信号介导肺腺癌EGFR-TKI原发耐药的机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向智能交通认知的CPS计算架构与可解释深度学习模型研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
尿素循环限速酶CPS1异常介导代谢重编程调控肝癌发生的功能机制研究
- 批准号:
- 批准年份:2021
- 资助金额:54.7 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
- 批准号:
2420847 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
- 批准号:
2322534 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
- 批准号:
2322533 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Small: Risk-Aware Planning and Control for Safety-Critical Human-CPS
合作研究:CPS:小型:安全关键型人类 CPS 的风险意识规划和控制
- 批准号:
2423130 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
- 批准号:
2420846 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant