Collaborative Research: Frameworks for Intelligent Adaptive Experimentation: Enhancing and Tailoring Digital Education
合作研究:智能自适应实验框架:增强和定制数字教育
基本信息
- 批准号:2209819
- 负责人:
- 金额:$ 220万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
People are constantly learning – whether formal education of homework problems & videos, or reading websites like Wikipedia. This project develops the Experiments As a Service Infrastructure (EASI), which lowers the barriers to conducting randomized experiments that compare alternative ways of designing digital learning experiences, as well as analyzing the data derived from the systems to rapidly change what future people receive. It does this by bringing together multidisciplinary researchers around the shared problem of testing ideas for improving and personalizing educational resources. The research also advances (1) the science of learning and instruction; (2) methods for analyzing complex educational data, and (3) machine learning algorithms that use data to improve educational experiences. Improving learning and teaching increases people's knowledge and gives them the ability to solve problems they care about, driving their personal and career success and increasing society's human capital.Instructional decisions about digital educational resources impact all students, from practice problems in K12 systems to tutorial webpages in university and community college online courses. The current versions of resources are too infrequently compared against alternative resources, which may provide better learning. With this in mind, the project has the goal of using data to test hypotheses about what is most helpful to students, and then use that data to change the experience for future students. The Experiments-As-a-Service-Infrastructure supports three complementary types of multi-disciplinary, collaborative research. A–Design: the infrastructure helps researchers investigate theories of learning and discover how to improve instruction by designing randomized field experiments on components of real-world digital educational resources. This provides more ecologically valid research on learning and instruction, in subfields of education, psychology, policy and discipline-based education research. B–Analysis: the infrastructure facilitates sophisticated analysis of experiments in the context of large-scale data about student profiles, such as to discover which interventions are effective for different subgroups of students. This can advance the use of innovative data-intensive methods for gaining actionable knowledge in education, learning analytics, educational data mining, and applied statistics. C–Adaptation: the infrastructure enables research into adaptive experimentation by providing a testbed for algorithms that dynamically analyze data from experiments, to enhance learning by presenting future students with whichever version of a resource (condition) is more effective, or to personalize learning by presenting different subgroups of future students with the version of a resource that is most effective for their subgroup. The infrastructure provides a testbed for empirical evaluation of which algorithms enact effective adaptive experimentation in education to inspire the development of new algorithms. Finally, the work aligns many educational communities around the shared problem of enhancing and personalizing education through experimentation and spurs multidisciplinary research by providing extensive support for collaboration and sharing of designs, data, analysis scripts and algorithms while fostering an online community for training and collaborations, to promote high-quality, innovative, impactful experiments.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人们不断学习——无论是家庭作业问题和视频的正规教育,还是阅读维基百科等网站,该项目开发了实验即服务基础设施 (EASI),这降低了进行随机实验的障碍,这些实验比较设计数字学习体验的替代方法。 ,以及分析从系统中获得的数据,以快速改变未来人们所接受的内容。它通过将多学科研究人员聚集在一起,围绕测试改进和个性化教育资源的共同问题来实现这一点。该研究还推动了(1)科学的发展。 (2) 方法分析复杂的教育数据,以及(3)使用数据改善学习和教学的机器学习算法增加人们的知识,使他们有能力解决他们关心的问题,推动他们的个人和职业成功并增加社会的人力资本。关于数字教育资源的教学决策影响着所有学生,从 K12 系统中的练习问题到大学和社区学院在线课程中的教程网页,当前版本的资源很少与替代资源进行比较,而替代资源可能会提供更好的学习效果。心灵,那个项目的目标是使用数据来测试对学生最有帮助的假设,然后使用该数据来改变未来学生的体验。实验即服务基础设施支持三种互补类型的多学科、 A-设计:该基础设施帮助研究人员研究学习理论,并通过对现实世界数字教育资源的组成部分设计随机现场实验来探索如何改进教学,这为学习和教学的子领域提供了更生态有效的研究。教育、心理学、政策和学科教育B-分析:该基础设施有助于在有关学生概况的大规模数据的背景下进行复杂的实验分析,例如发现哪些干预措施对不同的学生群体有效,这可以促进创新数据密集型方法的使用。用于获得教育、学习分析、教育数据挖掘和应用统计方面的可操作知识:该基础设施通过提供动态分析实验数据的算法测试平台来支持适应性实验的研究,通过向未来的学生展示增强学习。无论资源的哪个版本(条件)更有效,或者通过向未来学生的不同子群体提供对其子群体最有效的资源版本来个性化学习。该基础设施提供了一个测试平台,用于实证评估哪些算法可以在教育中实施有效的自适应实验。最后,这项工作使许多教育社区围绕通过实验增强和个性化教育的共同问题进行协调,并通过为设计、数据、分析脚本和算法的协作和共享提供广泛支持,同时培育在线培训社区,促进多学科研究该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Stamper其他文献
Automated Generation and Tagging of Knowledge Components from Multiple-Choice Questions
从多项选择题中自动生成和标记知识成分
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Steven Moore;Robin Schmucker;Tom Mitchell;John Stamper - 通讯作者:
John Stamper
Supporting Self-Reflection at Scale with Large Language Models: Insights from Randomized Field Experiments in Classrooms
使用大型语言模型支持大规模自我反思:课堂随机现场实验的见解
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Harsh Kumar;Ruiwei Xiao;Benjamin Lawson;Ilya Musabirov;Jiakai Shi;Xinyuan Wang;Huayin Luo;Joseph Jay Williams;Anna N. Rafferty;John Stamper;Michael Liut - 通讯作者:
Michael Liut
A Human-Computer Interaction Perspective on Clinical Decision Support Systems: A Systematic Review of Usability, Barriers, and Recommendations for Improvement
临床决策支持系统的人机交互视角:可用性、障碍和改进建议的系统回顾
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Gonçalo Ferreira;E. Oliveira;John Stamper;António Coelho;Hugo Paredes;N. F. Rodrigues - 通讯作者:
N. F. Rodrigues
Programming Pathway Clustering Using Tree Edit Distance
使用树编辑距离对路径聚类进行编程
- DOI:
- 发表时间:
2024-09-13 - 期刊:
- 影响因子:0
- 作者:
Bo Jiang;Zhixuan Li;John Stamper - 通讯作者:
John Stamper
Enhancing LLM-Based Feedback: Insights from Intelligent Tutoring Systems and the Learning Sciences
加强基于法学硕士的反馈:来自智能辅导系统和学习科学的见解
- DOI:
10.48550/arxiv.2405.04645 - 发表时间:
2024-05-07 - 期刊:
- 影响因子:0
- 作者:
John Stamper;Ruiwei Xiao;Xinynig Hou - 通讯作者:
Xinynig Hou
John Stamper的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Stamper', 18)}}的其他基金
Collaborative Research: Learning Linkages: Integrating Data Streams of Multiple Modalities and Timescales
协作研究:学习联系:整合多种模式和时间尺度的数据流
- 批准号:
1418181 - 财政年份:2014
- 资助金额:
$ 220万 - 项目类别:
Standard Grant
NSF East Asia Summer Institutes for US Graduate Students
NSF 东亚美国研究生暑期学院
- 批准号:
0714428 - 财政年份:2007
- 资助金额:
$ 220万 - 项目类别:
Fellowship
相似国自然基金
基于自复位混合阻尼实现钢框架综合韧性提升的多性态地震响应机理与设计调控方法研究
- 批准号:52378182
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
协同控制支撑钢框架自复位与耗能协调机理和韧性优化方法研究
- 批准号:52308195
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
P-S-Se三元共价框架结构设计及在锂硫电池中的无穿梭效应储锂机理研究
- 批准号:22379114
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
选择性分离水产品中全氟辛酸的金属有机框架的设计制备及吸附机制研究
- 批准号:32302234
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于共价有机框架的噬菌体-光催化协同靶向抗菌策略用于顽固性细菌感染的研究
- 批准号:22378279
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 220万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
- 批准号:
2347321 - 财政年份:2024
- 资助金额:
$ 220万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
- 批准号:
2411294 - 财政年份:2024
- 资助金额:
$ 220万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
- 批准号:
2411298 - 财政年份:2024
- 资助金额:
$ 220万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
- 批准号:
2411296 - 财政年份:2024
- 资助金额:
$ 220万 - 项目类别:
Standard Grant